Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 October 2020 | Story Leonie Bolleurs | Photo Supplied
Prof Kahilu Kajimo-Shakantu believes there are a number of benefits and lessons that the construction industry can draw if they adopt technology that can lead to sustainable construction beyond the COVID-19 era.

The construction business has been hit hard, with various negative impacts on cost, implementation timelines, profits, and others. Increased and smart adoption of technology, however, can transform the sector to make it more sustainable. 

This is the belief of Prof Kahilu Kajimo-Shakantu, Head of the Department of Quantity Surveying and Construction Management at the University of the Free State (UFS).

As president of the Association of Schools of Construction of Southern Africa (ASOCSA), she delivered the welcoming address of the 14th Built Environment conference (21, 22 September 2020). Prof Kajimo-Shakantu is the sixth president of ASOCSA.

The theme of this year’s built-environment conference, presented for the very first time in a virtual format, was Technology, Transformation and Sustainable Construction.

Identify and harness opportunities 

“It is clear that while COVID-19 remains a challenge, opportunities can be identified and harnessed even by our own construction industry through the exploitation of technological, transformative, and sustainable practices. The technology and transformation taking place now – in South Africa and beyond this COVID-19 situation – should be embraced for competitive advantage, even after the pandemic disappears,” said Kajimo-Shakantu.

Clients, consultants, contractors, and suppliers of materials and services can wholly embrace technology and transformation for sustainable, cost-effective, less wasteful, and cleaner construction processes. – Prof Kahilu Kajimo-Shakantu


She also provided some practical suggestions: “Technologies such as remote monitoring of construction sites and selected construction site operations through high-definition cameras and robust software should be encouraged as a way of minimising health and safety risks and mobility costs during the project duration, and at the same time ensuring an all-time virtual presence on site for various purposes.”

“Virtual contract progress meetings, site meetings, and supervision of specialised work are some of the benefits that the construction industry could gain if they adopt technology that can lead to sustainable construction beyond the COVID-19 era,” she added. 

Encourage meaningful partnerships

It is no longer a case of business as usual. Prof Kajimo-Shakantu believes stronger collaboration and meaningful partnerships must be encouraged among all stakeholders if the conference theme is to be fully actualised for the benefit of the construction industry, as it races towards attaining sustainable construction.

She said: “Clients, consultants, contractors, and suppliers of materials and services can wholly embrace technology and transformation for sustainable, cost-effective, less wasteful, and cleaner construction processes.”

Many insightful and thought-provoking papers touching on construction industry challenges and opportunities, as well as the teaching and learning of students, were delivered by both local and international delegates. 

The conference is believed to be one of the major cutting-edge built-environment conferences on the African continent. 

A guest of honour at the event was the Vice-Rector: Academic at the University of the Free State, Dr Engela van Staden. In her welcome address, she challenged delegates to establish a consistent channel for disseminating some of the research outcomes to industry stakeholders, including the respective government departments. “It is time to go beyond building rich databases and prestigious publications for our universities,” she said.

Keynote speakers included Prof Monty Sutrisna, Professor of Construction and Project Management and the Head of the School of Built Environment at Massey University, New Zealand; Prof Obas John, Professor of Sustainability and Environmental Law and Director of Internationalisation at London South Bank University; Prof David Edwards, Professor of Plant and Machinery Management, Birmingham City University, England; and Dr Reza Hosseini, the Associate Head of School (research) in the School of Architecture and Built Environment, Deakin University, Australia.

The various interesting peer-reviewed research papers that were delivered, addressed topical issues that affect the built environment not only in South Africa, but also in the regions beyond.

News Archive

UFS research could light up South African homes
2016-01-21

Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology, is using her research to provide solutions to the energy crises in South Africa.

A young researcher at the university is searching for the solution to South Africa’s energy and electricity problems from a rather unlikely source: cow dung.

“Cow dung could help us power South Africa,” explains Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology.

Reitumetse’s research is trying to understand how the bacteria works that is responsible for producing biogas.

“Biogas can be used for cooking, heating, lighting and powering generators and turbines to make electricity. The remaining liquid effluent can fertilise crops, as it is high in nitrogen, phosphorus and potassium.”

By using cow dung and food waste to produce biogas, we will be able to lower greenhouse gases.

Biogas is produced in a digester - an oxygen-free space in which bacteria break down or digest organic material fed into the system. This process naturally produces biogas, which is mainly a mixture of methane and carbon dioxide.

“Many countries, such as Germany and the United States, have begun generating electricity from cow dung and food waste, through a process known as biogas production. In South Africa, a number of industries, including waste-water treatment facilities and farms, have caught on to this technology, using it to generate heat and to power machines.”

Until recently the world has relied heavily on electricity derived from fossil fuels such as coal, natural gas and oil. Once these fuels have been extracted from underground reservoirs, they are treated or cleaned, transported to power plants and transformed into the electricity that will reach your house. Fossil fuels are considered a ‘dirty’ energy source which gives off greenhouse gases when burned. Those gases are the major contributing factor to climate change.

“We know very little about the interaction of the bacteria inside the biogas digester. To use biogas as a sustainable fuel source, we need to understand and describe the bacteria population and growth dynamics inside the digester to produce biogas optimally. Currently we are testing a variety of feedstock, including bran, maize and molasses, for biogas production potential, as well as optimising the conditions leading to maximum biogas production. We are also exploring the potential to use the effluent as fertiliser on local farms. The ultimate goal is to have biogas systems that will supply our university with clean energy.”


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept