Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 September 2020 | Story Andre Damons | Photo Supplied
Dr Martin Nyaga, Senior Lecturer and Researcher: NGS, will be heading the World Health Organisation Collaborating Centre (WHO CC).

The University of the Free State (UFS) has been designated a World Health Organisation Collaborating Centre (WHO CC), and the university’s Next Generation Sequencing (NGS) Unit, in partnership with the World Health Organisation (WHO), will for the next four years be conducting genome sequencing of pathogenic organisms, including rotavirus strains from the African continent. 

This centre will be part of the Vaccine Preventable Diseases (VPD) Pathogens Genomics Cluster and will run from September 2020 to September 2024. 

Dr Martin Nyaga, Senior Lecturer and Researcher: NGS/Virology, who will be heading the WHO CC, says an institution is designated as a WHO CC by the WHO Director-General and endorsed by the host country’s minister of health to form part of an international collaborative network, carrying out activities in support of the WHO programmess at all levels. A designation as a WHO CC is a time-limited agreement of collaboration between WHO and the designated institution, through which the latter agrees to implement a series of concrete activities, specifically designed for WHO.

A supreme achievement

Says Dr Nyaga: “In my opinion, a WHO CC designation is one of the supreme achievements an institution can be conferred as a recognition for foregoing exceptional collaborative venture with the WHO and showing future potential to assist the WHO with its global programmes and in our case, the WHO Regional Office for Africa region to offer solutions to the WHO VPD Surveillance and pathogens genomics cluster.”

According to Dr Nyaga this designation was awarded to the UFS after the WHO was content with the outcome of a service contract whereby the UFS-NGS unit undertook a pilot rotavirus surveillance project at whole genome level, using two African countries for the pilot, Rwanda and Zambia.

“From the outcomes of the pilot surveillance project between 2017 and 2019, the WHO/AFRO was satisfied with the genomic data that was generated and partially disseminated in scientific databases and journals as a collaborative venture. 

“It was thus proposed to strengthen its existing collaboration with the UFS-NGS Unit, which initiated the application process to designate the UFS-NGS unit as a WHO CC, an initiative that has taken approximately 20 months to finalise through the different phases of the application and approvals for the designation,” explains Dr Nyaga.

The purpose of the WHO CC

The new WHO CC will upon request by the WHO, implement agreed work plans in a timely manner and to the highest possible standards of quality and must comply with the referred terms of reference and conditions. These include: 
• Conducting genome sequencing of pathogenic organisms causing VPD, including rotavirus strains collected as part of the routine VPD surveillance using NGS technology and analysis of the generated datasets using bioinformatics tools.

• Conducting molecular characterisation of specimens collected during outbreaks and public health emergencies as part of the support for monitoring, preparedness and response to VPD disease outbreaks in Africa.

• Provide technical guidance to WHO on strategies to improve laboratory molecular diagnostics, molecular typing and NGS of rotavirus diarrheal strains and other enteropathogens to detect novel and re-emerging strains. 

• Conduct validation of tools and new molecular diagnostics for detection and characterisation of unusual or rare VPD strains to guide studies and development of new vaccines for VPD.

• Organise capacity-building and training workshops on whole genome sequencing of priority VPD pathogenic organisms.

The impact of the WHO CC on the work of the UFS-NGS 

According to Dr Nyaga, the designation brings extra responsibilities to his work and to the activities of the UFS-NGS unit. “Such initiatives are very welcome to enhance the business aspects, research and academic activities of the UFS-NGS unit, as the benefits are quite holistic since the collaboration enhances co-ownership of data and offers opportunities to train postgraduate students and other scientists.

“It also expands the research infrastructure and most importantly contributes to policy for numerous African governments in important decisions such as vaccine implementation activities, from an informed point of view and managing public health needs that require rapid response like outbreaks that may lead to pandemics.” 
• The current WHO CC designations at South African Institutions of higher learning and research can be found at: 

News Archive

UFS research could light up South African homes
2016-01-21

Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology, is using her research to provide solutions to the energy crises in South Africa.

A young researcher at the university is searching for the solution to South Africa’s energy and electricity problems from a rather unlikely source: cow dung.

“Cow dung could help us power South Africa,” explains Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology.

Reitumetse’s research is trying to understand how the bacteria works that is responsible for producing biogas.

“Biogas can be used for cooking, heating, lighting and powering generators and turbines to make electricity. The remaining liquid effluent can fertilise crops, as it is high in nitrogen, phosphorus and potassium.”

By using cow dung and food waste to produce biogas, we will be able to lower greenhouse gases.

Biogas is produced in a digester - an oxygen-free space in which bacteria break down or digest organic material fed into the system. This process naturally produces biogas, which is mainly a mixture of methane and carbon dioxide.

“Many countries, such as Germany and the United States, have begun generating electricity from cow dung and food waste, through a process known as biogas production. In South Africa, a number of industries, including waste-water treatment facilities and farms, have caught on to this technology, using it to generate heat and to power machines.”

Until recently the world has relied heavily on electricity derived from fossil fuels such as coal, natural gas and oil. Once these fuels have been extracted from underground reservoirs, they are treated or cleaned, transported to power plants and transformed into the electricity that will reach your house. Fossil fuels are considered a ‘dirty’ energy source which gives off greenhouse gases when burned. Those gases are the major contributing factor to climate change.

“We know very little about the interaction of the bacteria inside the biogas digester. To use biogas as a sustainable fuel source, we need to understand and describe the bacteria population and growth dynamics inside the digester to produce biogas optimally. Currently we are testing a variety of feedstock, including bran, maize and molasses, for biogas production potential, as well as optimising the conditions leading to maximum biogas production. We are also exploring the potential to use the effluent as fertiliser on local farms. The ultimate goal is to have biogas systems that will supply our university with clean energy.”


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept