Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 September 2020 | Story Andre Damons | Photo Supplied
Dr Satyajit Tripathy
Dr Satyajit Tripathy, a postdoctoral fellow from the Department of Pharmacology and Physiology, won the medal for the best oral performance at a UNESCO/UNITWIN network web seminar attended by more than 300 people from various institutions around the world.

A postdoctoral fellow in Pharmacology at the University of the Free State (UFS) was awarded a medal for the best oral e-poster presentation (Postdoctoral Fellow category) at a UNESCO/UNITWIN Network web seminar.

The two-day webinar with the theme Current concepts of Environmental Pollution by Electromagnetic field and Coronavirus was held in early August and was attended by more than 300 delegates from approximately 30 institutions from different countries.

Dr Satyajit Tripathy from the Department of Pharmacology won the medal for his outstanding research presentation on Employment of old options to control novel Coronavirus: Pros and Cons (authors: Barsha Dassarma, Satyajit Tripathy, MG Matsabisa). His presentations looked at immunotherapeutic techniques, such as the convalescent plasma (CP) therapy and possible diverse modes of action of the antimalarial drug hydroxychloroquine (HCQ) against COVID-19 infection.

The award will serve as motivation

He was excited to hear that he had won the award, says Dr Tripathy.

“I never thought I would win, but I tried my best. On the topic of possible modes of action of HCQ against the viral infection, we have published in the ‘International Journal of Antimicrobial Agents’ (S Tripathy, B Dassarma, H Chabalala, S Roy, and MG Matsabisa / International Journal of Antimicrobial Agents 56 (2020) 106028). All the authors are grateful to Prof Glen Taylor, Research Director at the UFS, and the UFS Department of Pharmacology, for giving us the opportunity,” says Dr Tripathy. 
According to him, receiving this award is a validation and boost to his confidence. “I am thankful to Prof Motlalepula Matsabisa (supervisor) and Dr Barsha Dassarma (my wife), who are also contributing actively to this project. Moreover, the award is a symbol of respect for my work and the acceptance of a greater responsibility to keep the UFS flag flying high.”
Dr Tripathy goes further to say that it will motivate him to work on HCQ or nano-HCQ delivery research on Coronaviruses. In his doctoral study, it has been found that chitosan-based nanochloroquine delivery increases antimalarial efficacy against rodent parasites. Against the Coronavirus, this type of approach might work to reduce the dose and increase the efficacy of HCQ, explains Dr Tripathy. 

Immediate saviour from the pandemic

In his presentation, Dr Tripathy argues that while the world is finding expedited approvals for the development of vaccines that are time-dependent, preventative, and possibly not a cure, physicians are considering the convalescent plasma (CP) therapy as an immediate saviour, and the antimalarial drug hydroxychloroquine (HCQ) as therapeutic options against COVID-19 infection, after assessing results from larger prospective, randomised, dose-determining controlled clinical trials. 
He concludes that, “Overall, in this situation of unavailability of specific medication, the CP therapy and HCQ treatment might act as an immediate saviour for society from the pandemic.”

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept