Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
05 February 2019 | Story Leonie Bolleurs
Cancer research
Inorganic Chemistry supervisors in the Radiopharmacy Laboratory during the preparation of a typical complex mixture to see how fast it reacts. If radioactivity is used, it is handled behind the grey lead-metal shield to minimise radiation of the researcher. Here are, from the left, front: Dr Marietjie Schutte-Smith, Dr Alice Brink (both scholars from the UFS Prestige Scholar Programme), and Dr Truidie Venter (all three are Thuthuka-funded researchers). Back: Prof André Roodt and Dr Johan Venter. (Not present: Prof Deon Visser and Amanda Manicum).

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of a research group in Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes potentially to the availability of pain therapy that does not involve common drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa, Switzerland and the USA, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits “X-rays” and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug (which contains the isotope Technetium-99m) is injected, it moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue

Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluorine-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron-facility was established by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being calmed and after the metabolism has been lowered considerably. The glucose, which is the 'food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluorine-18, which emits its own “X-rays”.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a collaborative study between the UFS and Kenya/ Sudan/ Lesotho. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea and South African aloe extracts), which possess anti-cancer qualities. A preliminary World Patent has also just been filed in more than 30 countries on potential new cancer medicines which contain both an imaging isotope and a therapy isotope/ compound.

News Archive

UFS receives R10 million in student funding from Absa
2017-06-19

 

Description: UFS receives R10 million in student funding from Absa Tags: UFS receives R10 million in student funding from Absa

From the left: Asive Dlanjwa (UFS SRC) Prof Francis Petersen, Fikemini Dlamini,
Bertie Smith and Lesley Afrika (student beneficiary 2016-2017)

 

In support of building a more equitable and prosperous Africa, and in response to the plight of students who lack financial aid at universities across the country, Absa Bank handed over a cheque of R10 million to the University of the Free State (UFS) at a ceremony held on the Bloemfontein Campus on 13 June 2017 by the office of Institutional Advancement. The allocation of these funds will assist students who meet the bursary programme criteria (proven financial need, students who are from households with a combined income of less than R1 million per annum, with an academic average of 55% or higher).

Corporate and higher education collaborate
Speaking at the event, Rector and Vice-Chancellor of the UFS Prof Francis Petersen highlighted the important role corporates play in collaborating with educational institutions to help support future professionals who are the future builders of the economy and will later lead industry. “Absa and the UFS enjoy a good relationship and it is our hope that this bursary programme will grow from strength to strength,” he said.

In 2016 alone, Absa Bank disbursed R12 million towards settling outstanding fees for 439 students in four faculties of the UFS. In 2017 the funds will be allocated similarly to cover financial needs of qualifying students. Mr Bertie Smith, Absa Management Executive: Central Region said: “The university plays an important role in building future leaders and Absa’s strategy of shared growth supports the focus on education.”

Responding to a greater socioeconomic need
The event was attended by staff of the UFS and delegates from the Absa group, as well as students who were beneficiaries of the Absa Bursary Fund in 2016. Mr Fikemini Dlamini, Absa Head: Public Sector Business Banking, said the bursary programme was born out of the growing need to fund and develop the education of young people, and is a response to the outcry from students across the country in the “Fees Must Fall” movement. He said: “Educating one young person has a knock-on effect that has the potential to alleviate poverty in many families and communities around us.”



We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept