Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
07 November 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Chemistry
Discussing progress in green energy and nuclear medicine during the recent ReMec2, were from the left: Dr Dumisani Kama (UFS), Prof Roger Alberto (University of Zurich), Prof Andreas Roodt (UFS), and Dr Orbett Alexander (UFS).

Scientists in South Africa and Switzerland, with a research collaboration of 20 years, are working together to make a difference. A major focus of their work is nuclear medicine and green energy. 

Since the end of October, 22 speakers from five countries met for five days at four different sites in South Africa to discuss their work during the second symposium on reaction mechanisms, better known as ReMec2. The Department of Chemistry at the University of the Free State (UFS) hosted this event. 

Considerable reduction of carbon dioxide

According to Prof Andreas Roodt, lead researcher from the UFS Department of Chemistry, ReMec2 focused mainly on two projects: nuclear medicine and an R8 million project titled: Solar Light-driven Homogeneous Catalysis for Greener Industrial Processes with H2 (hydrogen gas) as Energy Source and CO2 (carbon dioxide) as C1 Building Block. This is a sunlight-driven project in search of new catalysts, which are chemical compounds that make the reactions faster and more effective, but which are not consumed during the reaction. The aim is to provide greener industrial processes with hydrogen as energy source, and to reduce carbon dioxide in the environment.

This research, if applied, has the probability of preventing the release of more than 100 kg of harmful carbon dioxide for every one kg of hydrogen produced. “Together with the Swiss group, we are at that stage of the research where these compounds, with just one molecule of the catalyst, can make 80 000 hydrogen molecules (very clean energy, as hydrogen in a car's engine burns to clean water; not like gasoline that burns to harmful carbon dioxide),” Prof Roodt explains. 

The UFS and the research group from Prof Robert Alberto at the University of Zurich have been working together on this research for the past twenty years. According to Prof Roodt, they are studying complete reaction mechanisms, including the time profile of how the different chemical compounds are reacting with each other and not just the simple product analysis as studied by most groups in the world. 

International patent on nuclear medicine

In June 2019, they registered an international patent on nuclear medicine model compounds. The patent was granted. During ReMec2, a lecture was presented on this patent, according to which a compound with an imaging isotope [Tc-99m] that has its own ‘X-rays’, can shed light on an affected organ in the human body for doctors to see where medicine should be administered. The same compound also contains the medicine to treat the disease. 

The work of these scientists is 100% in line with South Africa’s National Development Plan and it supports the UFS Strategic Plan. “The programme also builds on students’ research and increases network and collaboration possibilities. We receive more international acknowledgement for our research efforts and compete with the best in the world. Our research is not necessarily about having the best equipment (although it is very important), but critically it is about the generation of innovative ideas,” says Prof Roodt. 

News Archive

#Women'sMonth: Save the children
2017-08-10

Description: Trudi O'Neill Tags: : rotaviruses, young children, Dr Trudi O’Neill, Department of Microbial, Biochemical and Food Biotechnology, vaccine 

Dr Trudi O’Neill, Senior lecturer in the Department of
Microbial, Biochemical and Food Biotechnology.
Photo: Anja Aucamp

Dr Trudi O’Neill, Senior lecturer in the Department of Microbial, Biochemical and Food Biotechnology, is conducting research on rotavirus vaccines.

Dr O’Neill was inspired to conduct research on this issue through her fascination with the virus. “The biology of rotaviruses, especially the genome structure and the virus’ interaction with the host, is fascinating.”

“In fact, it is estimated that, globally, ALL children will be infected with rotavirus before the age of five, irrespective of their socio-economic standing. However, infants and young children in poor countries are more vulnerable due to inadequate healthcare. The WHO estimates that approximately 215 000 deaths occur each year. This roughly equates to eight Airbus A380 planes, the largest commercial carrier with a capacity of approximately 500 seats, filled with only children under the age of five, crashing each week of every year.”

Alternative to expensive medicines 
“Currently, there are two vaccines that have been licensed for global use. However, these vaccines are expensive and poor countries, where the need is the greatest, are struggling to introduce them sustainably. It is therefore appealing to study rotaviruses, as it is scientifically challenging, but could at the same time have an impact on child health,” Dr O’Neill said.

The main focus of Dr O’Neill’s research is to develop a more affordable vaccine that can promote child vaccination in countries/areas that cannot afford the current vaccines.

All about a different approach 

When asked about the most profound finding of her research, Dr O’Neill responded: “It is not so much a finding, but rather the approach. My rotavirus research group is making use of yeast as vehicle to produce a sub-unit vaccine. These microbes are attractive, as they are relatively easy to manipulate and cheap to cultivate. Downstream production costs can therefore be reduced. The system we use was developed by my colleagues, Profs Koos Albertyn and Martie Smit, and allows for the potential use of any yeast. This enables us to screen a vast number of yeasts in order to identify the best yeast producer.”

Vaccination recently acquired a bad name in the media for its adverse side effects. As researcher, Dr O’Neill has this to say: “Vaccines save lives. By vaccinating your child, you don’t just protect your own child from a potentially deadly infection, but also other children in your community that might be too young to be vaccinated or have pre-existing health problems that prevents vaccination.” 

A future without rotavirus vaccination?

Dr O’Neill believes a future without rotavirus vaccination will be a major step backwards, as the impact of rotavirus vaccines has been profound. “Studies in Mexico and Malawi actually show a reduction in deaths. A colleague in Mozambique has commented on the empty hospital beds that amazed both clinicians and scientists only one year after the introduction of the vaccine in that country. Although many parents, mostly in developed countries, don’t have to fear dehydrating diarrhoea and potential hospitalisation of their babies due to rotavirus infection anymore, such an infection could still be a death sentence in countries that have not been able to introduce the vaccine in their national vaccination programmes,” she said. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept