Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
07 November 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Chemistry
Discussing progress in green energy and nuclear medicine during the recent ReMec2, were from the left: Dr Dumisani Kama (UFS), Prof Roger Alberto (University of Zurich), Prof Andreas Roodt (UFS), and Dr Orbett Alexander (UFS).

Scientists in South Africa and Switzerland, with a research collaboration of 20 years, are working together to make a difference. A major focus of their work is nuclear medicine and green energy. 

Since the end of October, 22 speakers from five countries met for five days at four different sites in South Africa to discuss their work during the second symposium on reaction mechanisms, better known as ReMec2. The Department of Chemistry at the University of the Free State (UFS) hosted this event. 

Considerable reduction of carbon dioxide

According to Prof Andreas Roodt, lead researcher from the UFS Department of Chemistry, ReMec2 focused mainly on two projects: nuclear medicine and an R8 million project titled: Solar Light-driven Homogeneous Catalysis for Greener Industrial Processes with H2 (hydrogen gas) as Energy Source and CO2 (carbon dioxide) as C1 Building Block. This is a sunlight-driven project in search of new catalysts, which are chemical compounds that make the reactions faster and more effective, but which are not consumed during the reaction. The aim is to provide greener industrial processes with hydrogen as energy source, and to reduce carbon dioxide in the environment.

This research, if applied, has the probability of preventing the release of more than 100 kg of harmful carbon dioxide for every one kg of hydrogen produced. “Together with the Swiss group, we are at that stage of the research where these compounds, with just one molecule of the catalyst, can make 80 000 hydrogen molecules (very clean energy, as hydrogen in a car's engine burns to clean water; not like gasoline that burns to harmful carbon dioxide),” Prof Roodt explains. 

The UFS and the research group from Prof Robert Alberto at the University of Zurich have been working together on this research for the past twenty years. According to Prof Roodt, they are studying complete reaction mechanisms, including the time profile of how the different chemical compounds are reacting with each other and not just the simple product analysis as studied by most groups in the world. 

International patent on nuclear medicine

In June 2019, they registered an international patent on nuclear medicine model compounds. The patent was granted. During ReMec2, a lecture was presented on this patent, according to which a compound with an imaging isotope [Tc-99m] that has its own ‘X-rays’, can shed light on an affected organ in the human body for doctors to see where medicine should be administered. The same compound also contains the medicine to treat the disease. 

The work of these scientists is 100% in line with South Africa’s National Development Plan and it supports the UFS Strategic Plan. “The programme also builds on students’ research and increases network and collaboration possibilities. We receive more international acknowledgement for our research efforts and compete with the best in the world. Our research is not necessarily about having the best equipment (although it is very important), but critically it is about the generation of innovative ideas,” says Prof Roodt. 

News Archive

Cardiology Unit involved in evaluation of drug for rare genetic disease
2013-01-04

Front from the left, are: Marinda Karsten (study coordinator and registered nurse),
Laumarie de Wet (clinical technologist), Charmaine Krahenbuhl (study coordinator and radiographer),
Lorinda de Meyer (administrator), Andonia Page (study coordinator and enrolled nurse);
back Dr Gideon Visagie (sub investigator), Dr Derick Aucamp (sub investigagtor),
Prof. Hennie Theron, (principal investigator) and Dr Wilhelm Herbst (sub investigator).
Photo: Supplied
09 January 2013


The Cardiology Research Unit at the University of the Free State (UFS) contributed largely to the evaluation of the drug Juxtapid (lomitapide), which was developed by the Aegerion pharmaceutical company and approved by the FDA (Federal Drug Administration). Together with countries such as die USA, Canada and Italy, the UFS’ Unit recruited and evaluated the most patients (5 of 29) for the study since 2008.  

The drug was evaluated in persons with so-called familial homozygous hypercholesterolemia (HoFH).  

Following its approval by the FDA, Juxtapid is now a new treatment option for patients suffering from HoFH. The drug operates in a unique way which brings about dramatic improvements in cholesterol counts.  

According to Prof. Hennie Theron, Associate Professor in the Department of Cardiology at the UFS and Head of the Cardiology Contract Research Unit, HoFH is a serious, rare genetic disease which affects the function of the receptor responsible for the removal of low-density lipoprotein cholesterol (LDL-C) (“bad” cholesterol) from the body. Damage to the LDL receptor function leads to extremely high levels of blood cholesterol. HoFH patients often develop premature and progressive atherosclerosis, which is a narrowing or blockage of the arteries.  

“HoFH is a genetically transmitted disease and the most severe form of hypercholesterolemia. Patients often need a coronary artery bypass or/and aortic valve replacement before the age of 20. Mortality is extremely high and death often occurs before the third decade of life. Existing conventional cholesterol-lowering medication is unsuccessful in achieving normal target cholesterol values in this group of patients.  

“The only modality for treatment is plasmapheresis (similar to dialysis in patients with renal failure). Even with this type of therapy the results are relatively unsatisfactory because it is very expensive and the plasmapheresis has to be performed on a regular basis.  

“The drug Juxtapid, as currently evaluated, has led to a dramatic reduction in cholesterol values and normal values were achieved in several people. No existing drug is nearly as effective.  

“The drug represents a breakthrough in the treatment of familial homozygous hypercholesterolemia. The fact that it has been approved by the FDA, gives further impetus to the findings,” says Prof. Theron.  

In future further evaluation will be performed in other forms of hypocholesterolemia.  

According to Prof. Theron, the findings of the study, as well as the recent successful FDA evaluation, once again confirms the fact that the UFS’ Cardiology Contract Research Unit is doing outstanding work.  

Since its inception in 1992, the Unit has already been involved in more than 60 multi-centre, international phase 2 and 3 drug studies. Several of these studies, including the abovementioned study, really affected the way in which cardiology functions.  

The UFS’ Cardiology Contract Research Unit is being recognised nationally and internationally for its high quality of work and is constantly approached for their involvement in new studies.  

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept