Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
07 November 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Chemistry
Discussing progress in green energy and nuclear medicine during the recent ReMec2, were from the left: Dr Dumisani Kama (UFS), Prof Roger Alberto (University of Zurich), Prof Andreas Roodt (UFS), and Dr Orbett Alexander (UFS).

Scientists in South Africa and Switzerland, with a research collaboration of 20 years, are working together to make a difference. A major focus of their work is nuclear medicine and green energy. 

Since the end of October, 22 speakers from five countries met for five days at four different sites in South Africa to discuss their work during the second symposium on reaction mechanisms, better known as ReMec2. The Department of Chemistry at the University of the Free State (UFS) hosted this event. 

Considerable reduction of carbon dioxide

According to Prof Andreas Roodt, lead researcher from the UFS Department of Chemistry, ReMec2 focused mainly on two projects: nuclear medicine and an R8 million project titled: Solar Light-driven Homogeneous Catalysis for Greener Industrial Processes with H2 (hydrogen gas) as Energy Source and CO2 (carbon dioxide) as C1 Building Block. This is a sunlight-driven project in search of new catalysts, which are chemical compounds that make the reactions faster and more effective, but which are not consumed during the reaction. The aim is to provide greener industrial processes with hydrogen as energy source, and to reduce carbon dioxide in the environment.

This research, if applied, has the probability of preventing the release of more than 100 kg of harmful carbon dioxide for every one kg of hydrogen produced. “Together with the Swiss group, we are at that stage of the research where these compounds, with just one molecule of the catalyst, can make 80 000 hydrogen molecules (very clean energy, as hydrogen in a car's engine burns to clean water; not like gasoline that burns to harmful carbon dioxide),” Prof Roodt explains. 

The UFS and the research group from Prof Robert Alberto at the University of Zurich have been working together on this research for the past twenty years. According to Prof Roodt, they are studying complete reaction mechanisms, including the time profile of how the different chemical compounds are reacting with each other and not just the simple product analysis as studied by most groups in the world. 

International patent on nuclear medicine

In June 2019, they registered an international patent on nuclear medicine model compounds. The patent was granted. During ReMec2, a lecture was presented on this patent, according to which a compound with an imaging isotope [Tc-99m] that has its own ‘X-rays’, can shed light on an affected organ in the human body for doctors to see where medicine should be administered. The same compound also contains the medicine to treat the disease. 

The work of these scientists is 100% in line with South Africa’s National Development Plan and it supports the UFS Strategic Plan. “The programme also builds on students’ research and increases network and collaboration possibilities. We receive more international acknowledgement for our research efforts and compete with the best in the world. Our research is not necessarily about having the best equipment (although it is very important), but critically it is about the generation of innovative ideas,” says Prof Roodt. 

News Archive

NRF grants of millions for Kovsie professors
2013-05-20

 

Prof Martin Ntwaeaborwa (left) and Prof Bennie Viljoen
20 May 2013


Two professors received research grants from the National Research Foundation (NRF). The money will be used for the purchase of equipment to add more value to their research and take the university further in specific research fields.

Prof Martin Ntwaeaborwa from the Department of Physics has received a R10 million award, following a successful application to the National Nanotechnology Equipment Programme (NNEP) of the NRF for a high-resolution field emission scanning electron microscope (SEM) with integrated cathodoluminescence (CL) and energy dispersive X-ray spectrometers (EDS).

Prof Bennie Viljoen from the Department of Microbial, Biochemical and Food Biotechnology has also been awarded R1,171 million, following a successful application to the Research Infrastructure Support Programme (RISP) for the purchase of a LECO CHN628 Series Elemental Analyser with a Sulphur add-on module.

Prof Ntwaeaborwa says the SEM-CL-EDS’ state-of-the art equipment combines three different techniques in one and it is capable of analysing a variety of materials ranging from bulk to individual nanoparticles. This combination is the first of its kind in Africa. This equipment is specifically designed for nanotechnology and can analyse particles as small as 5nm in diameter, a scale which the old tungsten SEM at the Centre of Microscopy cannot achieve.

The equipment will be used to simultaneously analyse the shapes and sizes of submicron particles, chemical composition and cathodoluminescence properties of materials. The SEM-CL-EDS is a multi-user facility and it will be used for multi- and interdisciplinary research involving physics, chemistry, materials science, life sciences and geological sciences. It will be housed at the Centre of Microscopy.
“I have no doubt that this equipment is going to give our university a great leap forward in research in the fields of electron microscopy and cathodoluminescence,” Prof Ntwaeaborwa said.

Prof Viljoen says the analyser is used to determine nitrogen, carbon/nitrogen, and carbon/hydrogen/nitrogen in organic matrices. The instrument utilises a combustion technique and provides a result within 4,5 minutes for all the elements being determined. In addition to the above, the machine also offers a sulphur add-on module which provides sulphur analysis for any element combination. The CHN 628 S module is specifically designed to determine the sulphur content in a wide variety of organic materials such as coal and fuel oils, as well as some inorganic materials such as soil, cement and limestone.

The necessity of environmental protection has stimulated the development of various methods, allowing the determination of different pollutants in the natural environment, including methods for determining inorganic nitrogen ions, carbon and sulphur. Many of the methods used so far have proven insufficiently sensitive, selective or inaccurate. The availability of the LECO analyser in a research programme on environmental pollution/ food security will facilitate accurate and rapid quantification of these elements. Ions in water, waste water, air, food products and other complex matrix samples have become a major problem and studies are showing that these pollutants are likely to cause severe declines in native plant communities and eventually food security.

“With the addition of the analyser, we will be able to identify these polluted areas, including air, water and land pollution, in an attempt to enhance food security,” Viljoen said. “Excess levels of nitrogen and phosphorous wreaking havoc on human health and food security, will be investigated.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept