Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
07 November 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Chemistry
Discussing progress in green energy and nuclear medicine during the recent ReMec2, were from the left: Dr Dumisani Kama (UFS), Prof Roger Alberto (University of Zurich), Prof Andreas Roodt (UFS), and Dr Orbett Alexander (UFS).

Scientists in South Africa and Switzerland, with a research collaboration of 20 years, are working together to make a difference. A major focus of their work is nuclear medicine and green energy. 

Since the end of October, 22 speakers from five countries met for five days at four different sites in South Africa to discuss their work during the second symposium on reaction mechanisms, better known as ReMec2. The Department of Chemistry at the University of the Free State (UFS) hosted this event. 

Considerable reduction of carbon dioxide

According to Prof Andreas Roodt, lead researcher from the UFS Department of Chemistry, ReMec2 focused mainly on two projects: nuclear medicine and an R8 million project titled: Solar Light-driven Homogeneous Catalysis for Greener Industrial Processes with H2 (hydrogen gas) as Energy Source and CO2 (carbon dioxide) as C1 Building Block. This is a sunlight-driven project in search of new catalysts, which are chemical compounds that make the reactions faster and more effective, but which are not consumed during the reaction. The aim is to provide greener industrial processes with hydrogen as energy source, and to reduce carbon dioxide in the environment.

This research, if applied, has the probability of preventing the release of more than 100 kg of harmful carbon dioxide for every one kg of hydrogen produced. “Together with the Swiss group, we are at that stage of the research where these compounds, with just one molecule of the catalyst, can make 80 000 hydrogen molecules (very clean energy, as hydrogen in a car's engine burns to clean water; not like gasoline that burns to harmful carbon dioxide),” Prof Roodt explains. 

The UFS and the research group from Prof Robert Alberto at the University of Zurich have been working together on this research for the past twenty years. According to Prof Roodt, they are studying complete reaction mechanisms, including the time profile of how the different chemical compounds are reacting with each other and not just the simple product analysis as studied by most groups in the world. 

International patent on nuclear medicine

In June 2019, they registered an international patent on nuclear medicine model compounds. The patent was granted. During ReMec2, a lecture was presented on this patent, according to which a compound with an imaging isotope [Tc-99m] that has its own ‘X-rays’, can shed light on an affected organ in the human body for doctors to see where medicine should be administered. The same compound also contains the medicine to treat the disease. 

The work of these scientists is 100% in line with South Africa’s National Development Plan and it supports the UFS Strategic Plan. “The programme also builds on students’ research and increases network and collaboration possibilities. We receive more international acknowledgement for our research efforts and compete with the best in the world. Our research is not necessarily about having the best equipment (although it is very important), but critically it is about the generation of innovative ideas,” says Prof Roodt. 

News Archive

Tiny microbes may solve large problems of water contamination, says Prof Esta van Heerden
2014-12-08

Small solutions for big problems

According to Prof Esta van Heerden, professor in the Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State (UFS), this might hold some truth in current terms of water treatment strategies for waste and industrial effluents.

“There is little doubt in popular literature that eminent water crises are looming, not only with respect to the supply, but quality and effectiveness of various treatment options as well. The UFS’s Department of Microbial, Biochemical and Food Biotechnology is partnering with the Technology Innovation Agency to evaluate water treatment technologies that are applied worldwide and to extend these new or adapted options to innovative and interested clients in South Africa,” says Prof Van Heerden.

“The research focuses on using extreme microbes to tackle big contaminations and the results are amazing,” says Prof Van Heerden.

These microbes are fast becoming the stars on sites and developing these exciting systems allows for greener treatment options. It is fascinating that they can deal with metals, including chromium and uranium, cyanide, petroleum and diesel.

Of utmost importance is the development of a treatment for acid mine drainage.

“Interests have been overwhelming and thus far partners have allowed pilot scale development on their sites with very promising results. These initiatives are driven by responsible partners who strive to be innovative and develop sustainable technologies for good quality water that can be released in the environment,” Prof Van Heerden says.

The research group has set up a pipeline to serve the water communities’ needs. It provides an accessible toolkit for water analysis. A tailor-made treatment option is also developed and showcased in the laboratories. It has the added benefit that Geosyntec Consultants, USA, will ensure faster roll-out by sharing their vast experience on any related aspects.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept