Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
07 November 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Chemistry
Discussing progress in green energy and nuclear medicine during the recent ReMec2, were from the left: Dr Dumisani Kama (UFS), Prof Roger Alberto (University of Zurich), Prof Andreas Roodt (UFS), and Dr Orbett Alexander (UFS).

Scientists in South Africa and Switzerland, with a research collaboration of 20 years, are working together to make a difference. A major focus of their work is nuclear medicine and green energy. 

Since the end of October, 22 speakers from five countries met for five days at four different sites in South Africa to discuss their work during the second symposium on reaction mechanisms, better known as ReMec2. The Department of Chemistry at the University of the Free State (UFS) hosted this event. 

Considerable reduction of carbon dioxide

According to Prof Andreas Roodt, lead researcher from the UFS Department of Chemistry, ReMec2 focused mainly on two projects: nuclear medicine and an R8 million project titled: Solar Light-driven Homogeneous Catalysis for Greener Industrial Processes with H2 (hydrogen gas) as Energy Source and CO2 (carbon dioxide) as C1 Building Block. This is a sunlight-driven project in search of new catalysts, which are chemical compounds that make the reactions faster and more effective, but which are not consumed during the reaction. The aim is to provide greener industrial processes with hydrogen as energy source, and to reduce carbon dioxide in the environment.

This research, if applied, has the probability of preventing the release of more than 100 kg of harmful carbon dioxide for every one kg of hydrogen produced. “Together with the Swiss group, we are at that stage of the research where these compounds, with just one molecule of the catalyst, can make 80 000 hydrogen molecules (very clean energy, as hydrogen in a car's engine burns to clean water; not like gasoline that burns to harmful carbon dioxide),” Prof Roodt explains. 

The UFS and the research group from Prof Robert Alberto at the University of Zurich have been working together on this research for the past twenty years. According to Prof Roodt, they are studying complete reaction mechanisms, including the time profile of how the different chemical compounds are reacting with each other and not just the simple product analysis as studied by most groups in the world. 

International patent on nuclear medicine

In June 2019, they registered an international patent on nuclear medicine model compounds. The patent was granted. During ReMec2, a lecture was presented on this patent, according to which a compound with an imaging isotope [Tc-99m] that has its own ‘X-rays’, can shed light on an affected organ in the human body for doctors to see where medicine should be administered. The same compound also contains the medicine to treat the disease. 

The work of these scientists is 100% in line with South Africa’s National Development Plan and it supports the UFS Strategic Plan. “The programme also builds on students’ research and increases network and collaboration possibilities. We receive more international acknowledgement for our research efforts and compete with the best in the world. Our research is not necessarily about having the best equipment (although it is very important), but critically it is about the generation of innovative ideas,” says Prof Roodt. 

News Archive

Researcher wins prize for her work to reduce environmental pollution
2016-12-26

Description: Josepha Zielke Tags: Josepha Zielke 

Prof Danie Vermeulen, Dean of the Faculty of Natural
and Agricultural Sciences, and Josepha Zielke, a
PhD student at the Institute for Groundwater studies at the
University of the Free State.
Photo: Leonie Bolleurs

Josepha Zielke, a PhD student at the Institute for Groundwater Studies at the University of the Free State (UFS), received the prize for the best student presentation at the International Mine Water Association (IMWA) symposium in Leipzig, Germany, this year. Her paper was titled Fine Ash Leaching in Tailings Dams – An Impact on the Underlying Aquifers?
 
Zielke said: “It is an honour to receive this prize as a student. IMWA is a big association which allows you to establish a network with other scientists, to exchange opinions and ideas and to gain new inspiration for your own work. It was exciting and informative to hear about the research conducted around the world and to meet the researchers themselves.”
 
Born in Germany, Zielke always wanted to study overseas. During an exchange year in Grade 11, she visited South Africa. When she had to make a decision about in which country to complete her studies, South Africa was first choice as she was familiar with the people and the country.
 
Zielke joins leading institute on groundwater research in the country
She completed her BSc Hons in Geology at the Nelson Mandela Metropolitan University. After working for a year in exploration, she decided to focus her studies on water-related problems which  has been a growing issue, not only in South Africa, but in many places around the world. Zielke heard that the UFS Institute for Groundwater Studies was the leading institute on groundwater research in the country, and decided to join the university.
 
After completing her MSc research, An analysis of the geochemical weathering profile within a fine ash tailings dam, Mpumalanga, South Africa, Zielke started the research for her PhD project on groundwater pollution along a fault system in Mpumalanga.
 
Research adding value to the environment by reducing pollution
She explains the focus of her research: “Several production plants and mine waste facilities are located on or near these geological structures which could be a possible cause of ground and surface water pollution. With the aid of geophysical ground surveys (using electromagnetics and electrical resistivity tomography), aquifer and tracer tests, we are trying to determine where the pollution is coming from, how far it has been distributed and to model the potential risks.
 
“This research will add value to the environment by preventing or at least reducing pollution leaking into the environment. Industrial sites always have a negative footprint on the environment but at least we try and contain it by finding the cause of ground and surface water pollution. Thereafter we try and solve the pollution problem or at least mitigate the damage to prevent the spreading of ground and surface water pollution in the area.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept