Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
10 June 2020 | Story Nitha Ramnath | Photo UFS Photo Archive
Prof Anthony Turton.

History was made in South Africa this week when a commercial laboratory became the first to extract COVID-19 RNA from various sewage samples in the country. This was done as a proof of concept, after the Dutch research agency KWR entered into an agreement with the SA Business Water Chamber on 9 April this year.

It was KWR that first demonstrated the potential of wastewater surveillance to identify the total viral load in a defined population in the Netherlands. This technology breakthrough has opened a new chapter in wastewater epidemiology on a global scale.
 
Prof Anthony Turton from the Centre for Environmental Management at the University of the Free State (UFS) says it is now possible to monitor the total viral load in each of the 824 wastewater treatment works in South Africa. Once the population size within the catchment area of the works is known, a calculation of the total viral load is possible, with a reasonable degree of accuracy. This accuracy will improve over time as the technology becomes more robust. 


Rapid deployment of technology
Prof Turton says this proof of concept is significant, because it took just eight weeks after reaching the agreement with KWR to find a laboratory with the necessary capabilities and to conduct the first tests. This is a rapid deployment of technology necessitated by the urgency of the COVID-19 pandemic. The source of funding for this demonstration was the private sector, so no taxpayer money was used. The proof of concept was deliberately designed to achieve two specific objectives. The main objective was to determine whether the Dutch methodology could be replicated in South Africa without major investment into training and procurement of laboratory equipment. The secondary objective was to understand the logistical complexities of sampling at multiple sewage works in one province, and then safely transporting those samples to the laboratory in another province. This emulates what will be needed if this methodology is adopted by government and rolled out across all provinces as required. 

Taking samples
Samples were taken over a 24-hour period using an automatic bulk sampler provided by a service provider at risk. A number of sewage works were sampled to emulate the complexity of a national operation should rapid implementation be required. The first samples were taken on Thursday 4 June. These were prepared according to a precise protocol and were shipped to the laboratory hundreds of kilometres away. The samples were prepared according to the stringent requirements of the protocol, and COVID-19 RNA was successfully extracted on Monday 8 June. Lessons learned in the first trial are being fed back to the team in preparation for the second sampling run that will take place shortly. 

Prof Turton, who serves in a facilitating role and in different capacities with each of the critical components of the overall value chain, is the man in the middle tying this whole process together. This is also a demonstration of the value of a university working in close collaboration with both government and private sector partners towards a common objective.  It is part of the Public Private Growth Initiative (PPGI), where the private sector works closely with the state to deliver core services needed to create employment opportunities as a matter of growing urgency.

Determining if the total viral load is increasing or decreasing
The second sampling run, which is about to be launched, will be a refinement of the first. Lessons learned during the logistical exercise will be applied to streamline the operation and generate an accurate costing of the service. By comparing the data for each sampling sequence, it will be possible to determine with a considerable degree of accuracy whether the total viral load in a given population is increasing or decreasing. When applied to multiple sewage works, it will be possible to identify hotspots for appropriate government intervention. This technical capability will provide robust information to both government and private sector decision-makers as they navigate their way through the complexity of a shutdown and phased re-opening of the national economy. Rapid upskilling of suitably qualified personnel will be needed, and the UFS will be playing a role in that process. 

News Archive

Department of Chemistry moves into world-class facilities
2008-05-16

 

Attending the opening of the first and second phases of the Department of Chemistry's upgraded research facilities on the Main Campus of the UFS in Bloemfontein are, from the left: Prof. André Roodt, Head of the department, Prof. Herman van Schalkwyk, Dean: Faculty of Natural and Agricultural Sciences at the UFS, and Ms Tania van Zyl, Architect from Goldblatt Yuill Architects in Bloemfontein.
Photo: Leonie Bolleurs

UFS Department of Chemistry moves into world-class facilities

The University of the Free State’s (UFS) Department of Chemistry recently moved into the first and second phases of the southern wing of the upgraded Moerdyk and annex building in which the department is situated. The wing is part an extensive project to upgrade the building and its facilities.

At a total costs of R40 million for the upgrading of the building and R30 million for the equipment, this is the biggest project of its kind in the history of the UFS.

The upgrading is taking place in four phases, of which the largest part is the southern wing. Researchers and undergraduate students recently moved into this part of the building, which consists of the first- and second-year laboratories. The laboratories consist of, among others, larger and safer venting and research-focused facilities as well as enough storage for the department’s equipment. Although one of the water-cooling systems on the roof of the building recently caught fire, all classes, practical and research work is going ahead without any disturbance.

“The putting into service of the first two phases is a milestone for the department. The project is almost half way and, when it is completed by the middle to end of 2009, we will boast with some of the best research and undergraduate laboratories in the country. It will also increase our leadership in advanced training on the continent and will strengthen the UFS’s role in the international chemistry arena,” says Prof. André Roodt, head of the department.

According to Prof. Roodt advanced research on fuel and nano particles (this is particles as big as one hundred thousandth of a human hair strand) will be conducted in the completed laboratories as part of the UFS’s research cluster initiative. Other research such as anti cancer remedies, research on various chemical processes and research on biological pharmacological remedies will also be done.

“During the past three years the department has made a significant impact on research in chemistry worldwide. Our academics are publishing in some of the world’s foremost chemistry journals and various presentations are made at international conferences. The upgraded facilities will ensure that we continue building on our high quality research and it will also ensure that our students can compete with the best in the world,” says Prof. Roodt.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
16 May 2008

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept