Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 August 2018 Photo Silverrocket Design
UFS celebrates excellence through its research hubs
The university considers its research chairs and the possibility of future chairs as an integral and strategic initiative to increase its national and international standing through excellent academic and research leadership.

The University of the Free State (UFS) is proud of its research leaders. As of 2018 the UFS has 156 NRF-rated researchers and five Sarchi Research Chairs. These chairs are designed to attract and retain excellence in research and innovation at South African public universities.

Getting the better of vector borne and zoonotic viruses

Prof Felicity Burt leads the Vector Borne and Zoonotic Virus Research Group in the Department of Medical Microbiology and Virology at the UFS. She was awarded a Research Chair to, among others, investigate medically significant vector-borne and zoonotic viruses currently circulating - mainly viruses transmitted by mosquitos and ticks, and viruses transmitted from animals to humans. 

“Years ago, no one knew what Ebola was. One outbreak later, backed by many media reports, and it is almost a household name. The same goes for the recent Zika virus outbreak in South America,” she explains the public’s interest and fears. To prevent the spread of vector-borne viruses to new areas, surveillance and awareness is important. Here in Bloemfontein, Prof Burt and her team are establishing surveillance programmes.

Why research on fungal infections?

“Many diseases no longer pose a threat to humans and life expectancy is prolonged. However, this has also caused an increase in various opportunistic infections, and most of all, fungal infections,” says Prof Carlien Pohl-Albertyn, who is heading the Research Chair for Pathogenic Yeasts in the Department of Microbial, Biochemical and Food Biotechnology. And the rise in resistance to antifungal treatments requires research into pathobiology, including new drug and treatment options. 

Activities of the Research Chair in Pathogenic Yeasts builds on existing research strengths and will contribute towards understanding pathobiology of medically significant pathogenic yeasts belonging to the genera Candida and Cryptococcus. 

Understanding higher education for more equality and justice

Prof Melanie Walker, from the Centre for Research on Higher Education and Development (CRHED) does research on higher education, inequalities and social justice, and how, or if, universities foster the human capabilities and aspirations of students. Does higher education make a difference to the lives of students, their families and communities? 

Prof Walker says the Research Chair on Higher Education and Human Development looks at issues of access, participation and transitions into work, as well as gender, race and social class. They use both quantitative and qualitative methods and includes a strand of participatory research projects with students. Ultimately, the research must contribute to debates, policy and practices in higher education, and a scholarly knowledge base.

Reduced emissions make for a better world

Prof Hendrik Swart chairs the research project that looks into low-energy lighting, using phosphor materials for light emitting diodes (LEDs). The Research Chair on Solid State Luminescent and Advanced Materials is situated at the Department of Physics

The research mainly focuses on better light emission of phosphor powers in LEDs.  According to Prof Swart, the long-term benefit of the research will result in more environmentally friendly devices which use less energy, are brighter and give a wider viewing field. Over the next five years they will develop and produce devices that emit better light using the substances already developed. “We need to make small devices to see if they are better than those we already have,” he says. 

Solutions to food insecurity
 

The Department of Plant Sciences’s research project dives into disease resistance and quality in field crops. Heading this Research Chair is Prof Maryke Labuschagne who focuses on crop quality breeding and disease resistance in field crops. 

Her, and her students’ research focuses on the genetic improvement of food security crops in Africa, including such staples as maize and cassava. “These crops are genetically improved for yield, drought tolerance, disease, and insect resistance, as well nutritional value,” she says. Her disease resistance research will focus on crop protein quantity and quality as well as iron, zinc, and beta-carotene biofortification of staple crops such as wheat, maize and cassava. The disease resistance-breeding project will be a continuation of the internationally acclaimed wheat rust research. 

The university considers the research chairs and the possibility of future chairs as an integral and strategic initiative to increase its national and international standing through excellent academic and research leadership. 

Microbiology from University of the Free State on Vimeo.

News Archive

#Women'sMonth: Save the children
2017-08-10

Description: Trudi O'Neill Tags: : rotaviruses, young children, Dr Trudi O’Neill, Department of Microbial, Biochemical and Food Biotechnology, vaccine 

Dr Trudi O’Neill, Senior lecturer in the Department of
Microbial, Biochemical and Food Biotechnology.
Photo: Anja Aucamp

Dr Trudi O’Neill, Senior lecturer in the Department of Microbial, Biochemical and Food Biotechnology, is conducting research on rotavirus vaccines.

Dr O’Neill was inspired to conduct research on this issue through her fascination with the virus. “The biology of rotaviruses, especially the genome structure and the virus’ interaction with the host, is fascinating.”

“In fact, it is estimated that, globally, ALL children will be infected with rotavirus before the age of five, irrespective of their socio-economic standing. However, infants and young children in poor countries are more vulnerable due to inadequate healthcare. The WHO estimates that approximately 215 000 deaths occur each year. This roughly equates to eight Airbus A380 planes, the largest commercial carrier with a capacity of approximately 500 seats, filled with only children under the age of five, crashing each week of every year.”

Alternative to expensive medicines 
“Currently, there are two vaccines that have been licensed for global use. However, these vaccines are expensive and poor countries, where the need is the greatest, are struggling to introduce them sustainably. It is therefore appealing to study rotaviruses, as it is scientifically challenging, but could at the same time have an impact on child health,” Dr O’Neill said.

The main focus of Dr O’Neill’s research is to develop a more affordable vaccine that can promote child vaccination in countries/areas that cannot afford the current vaccines.

All about a different approach 

When asked about the most profound finding of her research, Dr O’Neill responded: “It is not so much a finding, but rather the approach. My rotavirus research group is making use of yeast as vehicle to produce a sub-unit vaccine. These microbes are attractive, as they are relatively easy to manipulate and cheap to cultivate. Downstream production costs can therefore be reduced. The system we use was developed by my colleagues, Profs Koos Albertyn and Martie Smit, and allows for the potential use of any yeast. This enables us to screen a vast number of yeasts in order to identify the best yeast producer.”

Vaccination recently acquired a bad name in the media for its adverse side effects. As researcher, Dr O’Neill has this to say: “Vaccines save lives. By vaccinating your child, you don’t just protect your own child from a potentially deadly infection, but also other children in your community that might be too young to be vaccinated or have pre-existing health problems that prevents vaccination.” 

A future without rotavirus vaccination?

Dr O’Neill believes a future without rotavirus vaccination will be a major step backwards, as the impact of rotavirus vaccines has been profound. “Studies in Mexico and Malawi actually show a reduction in deaths. A colleague in Mozambique has commented on the empty hospital beds that amazed both clinicians and scientists only one year after the introduction of the vaccine in that country. Although many parents, mostly in developed countries, don’t have to fear dehydrating diarrhoea and potential hospitalisation of their babies due to rotavirus infection anymore, such an infection could still be a death sentence in countries that have not been able to introduce the vaccine in their national vaccination programmes,” she said. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept