Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 August 2018 Photo Silverrocket Design
UFS celebrates excellence through its research hubs
The university considers its research chairs and the possibility of future chairs as an integral and strategic initiative to increase its national and international standing through excellent academic and research leadership.

The University of the Free State (UFS) is proud of its research leaders. As of 2018 the UFS has 156 NRF-rated researchers and five Sarchi Research Chairs. These chairs are designed to attract and retain excellence in research and innovation at South African public universities.

Getting the better of vector borne and zoonotic viruses

Prof Felicity Burt leads the Vector Borne and Zoonotic Virus Research Group in the Department of Medical Microbiology and Virology at the UFS. She was awarded a Research Chair to, among others, investigate medically significant vector-borne and zoonotic viruses currently circulating - mainly viruses transmitted by mosquitos and ticks, and viruses transmitted from animals to humans. 

“Years ago, no one knew what Ebola was. One outbreak later, backed by many media reports, and it is almost a household name. The same goes for the recent Zika virus outbreak in South America,” she explains the public’s interest and fears. To prevent the spread of vector-borne viruses to new areas, surveillance and awareness is important. Here in Bloemfontein, Prof Burt and her team are establishing surveillance programmes.

Why research on fungal infections?

“Many diseases no longer pose a threat to humans and life expectancy is prolonged. However, this has also caused an increase in various opportunistic infections, and most of all, fungal infections,” says Prof Carlien Pohl-Albertyn, who is heading the Research Chair for Pathogenic Yeasts in the Department of Microbial, Biochemical and Food Biotechnology. And the rise in resistance to antifungal treatments requires research into pathobiology, including new drug and treatment options. 

Activities of the Research Chair in Pathogenic Yeasts builds on existing research strengths and will contribute towards understanding pathobiology of medically significant pathogenic yeasts belonging to the genera Candida and Cryptococcus. 

Understanding higher education for more equality and justice

Prof Melanie Walker, from the Centre for Research on Higher Education and Development (CRHED) does research on higher education, inequalities and social justice, and how, or if, universities foster the human capabilities and aspirations of students. Does higher education make a difference to the lives of students, their families and communities? 

Prof Walker says the Research Chair on Higher Education and Human Development looks at issues of access, participation and transitions into work, as well as gender, race and social class. They use both quantitative and qualitative methods and includes a strand of participatory research projects with students. Ultimately, the research must contribute to debates, policy and practices in higher education, and a scholarly knowledge base.

Reduced emissions make for a better world

Prof Hendrik Swart chairs the research project that looks into low-energy lighting, using phosphor materials for light emitting diodes (LEDs). The Research Chair on Solid State Luminescent and Advanced Materials is situated at the Department of Physics

The research mainly focuses on better light emission of phosphor powers in LEDs.  According to Prof Swart, the long-term benefit of the research will result in more environmentally friendly devices which use less energy, are brighter and give a wider viewing field. Over the next five years they will develop and produce devices that emit better light using the substances already developed. “We need to make small devices to see if they are better than those we already have,” he says. 

Solutions to food insecurity
 

The Department of Plant Sciences’s research project dives into disease resistance and quality in field crops. Heading this Research Chair is Prof Maryke Labuschagne who focuses on crop quality breeding and disease resistance in field crops. 

Her, and her students’ research focuses on the genetic improvement of food security crops in Africa, including such staples as maize and cassava. “These crops are genetically improved for yield, drought tolerance, disease, and insect resistance, as well nutritional value,” she says. Her disease resistance research will focus on crop protein quantity and quality as well as iron, zinc, and beta-carotene biofortification of staple crops such as wheat, maize and cassava. The disease resistance-breeding project will be a continuation of the internationally acclaimed wheat rust research. 

The university considers the research chairs and the possibility of future chairs as an integral and strategic initiative to increase its national and international standing through excellent academic and research leadership. 

Microbiology from University of the Free State on Vimeo.

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept