Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 July 2018 Photo Supplied
Five PhDs for Chemistry group at June 2018 graduation
Pictured here are the Department of Chemistry graduates and their promoters/ co-promoters. From the left are: Dr Alebel Belay, Dr Dumisani Kama, Dr Orbett Alexander, Dr Pennie Mokolokolo and Dr Pule Molokoane; back: Prof Andreas Roodt, Dr Marietjie Schutte-Smith, Dr Alice Brink and Dr Johan Venter. Prof Roodt was either promoter or co-promoter to four of the graduates, while Prof Deon Visser (promoter; not present) and Dr Alice Brink (co-promoter) supervised Dr Orbett Alexander.

What is the common factor among metal extraction from mineral reserves, the treatment of cancer, and nanomaterials in cellular phones? The answer is Chemistry. 

For the first time since the Department of Chemistry at the University of the Free State (UFS) was founded some 114 years ago, a single research group in Chemistry delivered five PhD students.  This was achieved in the division of Inorganic Chemistry at the 2018 Winter graduation ceremony by the group under leadership of Prof Andreas Roodt and senior colleagues, Drs Johan Venter, Alice Brink and Marietjie Schutte-Smith. Prof Deon Visser, a former group member, was promoter for one of the students. 

The five graduandi are Drs Alebel Belay, Dumisani Kama, Pennie Mokolokolo, Pule Molokoane and Orbett Alexander. Their research involved the use of special chemical groups which are attached to metals such as platinum, rhodium, niobium, technetium and rhenium to create compounds with special pre-selected properties. 

The combination of these special groups with the metals allow many different potential applications – all adding value. These include metal extraction from South Africa’s rich mineral reserves, the treatment of diseases such as cancer, the diagnosis of heart and brain damages, nanomaterials which are used in cellular phones, catalysts to produce cleaner petrol, special light devices which by themselves ‘glow in the dark’, and more. 

Three of the students completed part of their research in Switzerland.

News Archive

Fracking in the Karoo has advantages and disadvantages
2012-05-25

 

Dr Danie Vermeulen
Photo: Leatitia Pienaar
25 May 2012

Fracking for shale gas in the Karoo was laid bare during a public lecture by Dr Danie Vermeulen, Director of the Institute for Groundwater Studies (IGS). He shared facts, figures and research with his audience. No “yes” or “no” vote was cast. The audience was left to decide for itself.

The exploitation of shale gas in the pristine Karoo has probably been one of the most debated issues in South Africa since 2011.
 
Dr Vermeulen’s lecture, “The shale gas story in the Karoo: both sides of the coin”, was the first in a series presented by the Faculty of Natural and Agricultural Science under the theme “Sustainability”. Dr Vermeulen is a trained geo-hydrologist and geologist. He has been involved in fracking in South Africa since the debate started. He went on a study tour to the USA in 2011 to learn more about fracking and he visited the USA to further his investigation in May 2012.
 
Some of the information he shared, includes:

- It is estimated that South Africa has the fifth-largest shale-gas reserves in the world, following on China, the USA, Argentina and Mexico.
- Flow-back water is stored in sealed tanks and not in flow-back dams.
- Fracturing will not contaminate the water in an area, as the drilling of the wells will go far deeper than the groundwater aquifers. Every well has four steel casings – one within the other – with the gaps between them sealed with cement.
- More than a million hydraulic fracturing simulations took place in the USA without compromising fresh groundwater. The surface activities can cause problems because that is where man-made and managerial operations could cause pollution.
- Water use for shale-gas exploration is lower than for other kinds of energy, but the fact that the Karoo is an arid region makes the use of groundwater a sensitive issue. Dr Vermeulen highlighted this aspect as his major concern regarding shale-gas exploration.
- The cost to develop is a quarter of the cost for an oil well in the Gulf of Mexico.
- Dolerite intrusions in the Karoo are an unresearched concern. Dolerite is unique to the South African situation. Dolerite intrusion temperatures exceed 900 °C.

He also addressed the shale-gas footprint, well decommissioning and site reclamation, radio activity in the shale and the low possibility of seismic events.
 
Dr Vermeulen said South Africa is a net importer of energy. About 90% of its power supply is coal-based. For continued economic growth, South Africa needs a stable energy supply. It is also forecast that energy demand in South Africa is growing faster than the average global demand.
 
Unknowns to be addressed in research and exploration are the gas reserves and gas needs of South Africa. Do we have enough water? What will be the visual and social impact? Who must do the exploration?
 
“Only exploration will give us these answers,” Dr Vermeulen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept