Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 July 2018 Photo Supplied
Five PhDs for Chemistry group at June 2018 graduation
Pictured here are the Department of Chemistry graduates and their promoters/ co-promoters. From the left are: Dr Alebel Belay, Dr Dumisani Kama, Dr Orbett Alexander, Dr Pennie Mokolokolo and Dr Pule Molokoane; back: Prof Andreas Roodt, Dr Marietjie Schutte-Smith, Dr Alice Brink and Dr Johan Venter. Prof Roodt was either promoter or co-promoter to four of the graduates, while Prof Deon Visser (promoter; not present) and Dr Alice Brink (co-promoter) supervised Dr Orbett Alexander.

What is the common factor among metal extraction from mineral reserves, the treatment of cancer, and nanomaterials in cellular phones? The answer is Chemistry. 

For the first time since the Department of Chemistry at the University of the Free State (UFS) was founded some 114 years ago, a single research group in Chemistry delivered five PhD students.  This was achieved in the division of Inorganic Chemistry at the 2018 Winter graduation ceremony by the group under leadership of Prof Andreas Roodt and senior colleagues, Drs Johan Venter, Alice Brink and Marietjie Schutte-Smith. Prof Deon Visser, a former group member, was promoter for one of the students. 

The five graduandi are Drs Alebel Belay, Dumisani Kama, Pennie Mokolokolo, Pule Molokoane and Orbett Alexander. Their research involved the use of special chemical groups which are attached to metals such as platinum, rhodium, niobium, technetium and rhenium to create compounds with special pre-selected properties. 

The combination of these special groups with the metals allow many different potential applications – all adding value. These include metal extraction from South Africa’s rich mineral reserves, the treatment of diseases such as cancer, the diagnosis of heart and brain damages, nanomaterials which are used in cellular phones, catalysts to produce cleaner petrol, special light devices which by themselves ‘glow in the dark’, and more. 

Three of the students completed part of their research in Switzerland.

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept