Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 November 2019 | Story Leonie Bolleurs | Photo Johan Roux
Prof Zakkie Pretorius
Prof Zakkie Pretorius, Research Fellow at the UFS Department of Plant Sciences.

Prof Zakkie Pretorius, Research Fellow, and Prof Botma Visser, Associate Professor, both from the Department of Plant Sciences at the University of the Free State (UFS), partnered in a ground-breaking research project headed by Dr Melania Figueroa from the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia. Together, these scientists solved a 20-year-old mystery, uncovering the origins of one of the world’s deadliest strains of cereal rust disease.

The manuscript, with the title, Emergence of the Ug99 lineage of the wheat stem rust pathogen through somatic hybridisation, was accepted for publication in Nature Communications.

According to a statement released by CSIRO, research shows that the devastating Ug99 strain of the wheat stem-rust fungus was not the result of a sexual cross between different rust strains as previously thought, but in fact was created when fungal strands simply fused to create a new hybrid strain.

This process is called somatic hybridisation and enables fungi to merge their cells and exchange genetic material without going through a complex sexual reproduction cycle. The study found that half of Ug99’s genetic material came from a strain that occurred in Southern Africa around 100 years ago and eventually spread to Australia.

The discovery implies that other crop-destroying rust strains could hybridise elsewhere with Ug99, for example, to exchange genetic material and create a whole new enemy.

While there was some speculation that rust strains could hybridise – based on laboratory studies in the 1960s as well as some earlier studies on the topic – this comprehensive research now provided the first genomic evidence that the process can generate new strains.

History of Ug99

Prof Pretorius was the first person to describe the dangerous Ug99 isolate, confirming the ability of the isolate to leave the Sr31 resistance gene ineffective (up to that time, effective against all known wheat stem-rust races). This laid the basis for international concern.

He named the field sample Ug99, based on the country of origin (Uganda) and year of sample collection (1999). 

“The Sr31 resistance gene and associated traits were so effective that the gene occurred in almost 70% of CIMMYT’s (Mexican-based International Maize and Wheat Improvement Center) spring wheat germplasm. In addition, many popular cultivars containing the gene were released around the world.”

“Ug99 then disappeared for a few years. When the race re-appeared in East Africa, it caused localised but severe epidemics,” he said.

Prof Pretorius continues: “Leading wheat breeders and pathologists were concerned that Ug99 could destroy wheat production in many global regions where wheat is critical for food security. Thus, in 2005, Dr Norman Borlaug, Nobel laureate and father of the green revolution, called for a meeting in Kenya where a global effort to combat the threat was initiated. The international wheat research community was mobilised and with funding primarily from the Bill and Melinda Gates Foundation and coordinated by Cornell University in the USA, research commenced.”

wheat stem rust

Wheat stem rust 14: Rust diseases are the cause of extensive crop losses each year. With this recent discovery, published in 
Nature Communications, scientists can now better identify the resistance genes which can be bred into wheat varieties to give crops 
long-lasting protection against rust. (Photo: Supplied) 

“From field trials in Kenya, it soon became apparent that 90% of the world’s wheat varieties were susceptible to Ug99. Although breeding and selection for resistance started in earnest, the pathogen adapted, gaining virulence for other previously effective resistance genes. At present, 13 races have been described within the Ug99 group occurring in 13 countries, mostly in Africa, but also in Yemen and Iran. Five of these races are present in South Africa, all confirmed by scientists from the UFS and ARC-Small Grain in Bethlehem. The original Ug99 has, however, never been detected in South Africa.”

Combined efforts

Rusts are common fungal diseases of plants. The spores of the fungus attach themselves to the stems and leaves of wheat plants and essentially suck the nutrients from the plant. Plants either die or produce shrivelled and low-quality grain. 

Group Leader at CSIRO, Dr Melania Figueroa, agrees that Ug99 is considered the most threatening of all rusts, as it has managed to overcome most stem rust-resistance genes used in wheat varieties.

“There is some good news, however; the better you know your enemy, the more equipped you are to fight against it. Knowing how these pathogens come about means we can better predict how they are likely to change in the future and better determine which resistance genes can be bred into wheat varieties to give long-lasting protection.”

Earlier this year, CSIRO worked with the University of Minnesota and the 2Blades Foundation to improve wheat resistance by stacking five resistance genes into the one wheat plant to combat wheat stem rust. 

The breakthrough came as Dr Figueroa’s group was sequencing Ug99 (then at the University of Minnesota), and at the same time a CSIRO team led by Dr Peter Dodds was sequencing Pgt21 in Australia (Pgt21 is a rust strain that was first seen in South Africa in the 1920s and believed to have been carried to Australia in the 1950s by wind currents). When the two groups compared results, they found that the two pathogens share an almost identical nucleus and therefore half of their DNA.

“This discovery will make it possible to develop better methods to screen for varieties with strong resistance to disease,” said Dr Figueroa.

Molecular fingerprinting

In addition to infection studies, molecular fingerprinting by members of the South African Ug99 race group led by Prof Botma Visser at the UFS, confirmed their genetic placement in context with Ug99 and other global stem rust races. The availability of the original Ug99 collection, along with other local rust isolates in long-term storage at the UFS, was essential to the success of the current research.

Despite the continued evolution of stem-rust variants, excellent progress has been made worldwide in the breeding of resistant wheat cultivars, including in South Africa. With funding from the Winter Cereal Trust, Dr Willem Boshoff, Senior Lecturer in the Department of Plant Sciences at the UFS, is responsible for the annual testing of all commercial wheat cultivars and advanced breeding lines for appropriate stem rust races.

Dr Melania Figueroa
Dr Melania Figueroa from the Commonwealth Scientific and Industrial Research Organisation (CSIRO). Photo: Kate Langford

News Archive

Sport results: Tennis, Netball, badminton, athletics
2009-05-05

During the Mega-intervarsity Tournament held at Sun City last week, both the University of the Free State’s (UFS) men’s and women’s tennis teams beat their opponents. The Kovsies women’s team beat the Pukke 15-0, Tukkies 15-1 and Maties 12-5.

The Kovsies men’s team beat their respective opponents as follows: Maties A 12-6, Maties B 15-0, Pukke A 9-7, Tukkies A 14-1 and Pukke B 15-0.

Janine de Kock from KovsieSport said that she was satisfied with these achievements. “For the past two years the women have won the University Sports South Africa (USSA) tournament and now again this tournament. What makes this achievement special is the fact that it was the first tournament that four of the women’s team members played for the UFS.”

“I am also very satisfied with the achievements of the men’s team. They ended sixth in last year’s USSA tournament. This year, at a tournament where the top four universities in terms of tennis were present, they won,” said Janine.
Rensia Henning in action during the Mega-intervarsity Tournament that took place at Sun City last week.
Photos: Jeanine de Kok
 
Netball: Hard work gets rewarded - (April 2009)

Three Kovsies were selected from the South African National Netball team to the Senior Top 12 Team that will represent South Africa at the SPAR Challenge, a three nation’s test series against Botswana and Fiji. These matches will take place towards the end of May in Pretoria.

The three students are Elzet Engelbrecht, Maryka Holtzhausen, en Adele Niemand.


Kovsie students compete at badminton championships

One former student from the University of the Free State (UFS) Chris Dednam, and one current Kovsie student Annari Viljoen are included in the National Badminton Team that represented South Africa from 17 to 24 April 2009 at the All Africa Badminton Championships in Nairobi, Kenya. They also participated in the Kenya International Championships from 25 to 27 April 2009.

Chris Dednam and Annari Viljoen and with them Roelof Dednam, also a former Kovsie student, were included in the team that will participate at the Sudirman Cup in Guangzhou, China. The Sudirman Cup that will take place from 10 to 17 May 2009 is the world mixed team badminton championship and takes place every two years.

Kovsie athletes win medals

Kovsie athletes excelled at the South African Students Athletics Championships (USSA) that was held in Stellenbosch by winning a total of 15 medals.

The medal winners are:
Gold: Thuso Mpuang for the 200m, Johan Cronjè for the 1 500m, Maryna Swanepoel for the half marathon and Marizette Badenhorst for hammer throw.
Silver: Thuso Mpuang for the 100m, Johan Cronjè for the 5 000m, Charles le Roux for triple jump, Ronè Reynecke for the 800m, and Abongile Lerotholi for 1 500m.
Bronze: Kagisho Kumbane for 100m and 200m, Boy Soke for half marathon, Charles le Roux for long jump, Thandi Malindi for the 3 000m steeple chase, and Marike Steyn for triple jump.

In the team competition the Kovsie men’s team received third place and the women’s team fourth place.
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept