Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 September 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Read More Prof Wijnand Swart PSHB
A small 2 mm beetle, known as the Polyphagous shothole borer (PSHB) kills and infects trees. South Africa is the largest geographical area in the world to be infested with this tree killer. Pictured here is Prof Wijnand Swart who is working with two neighbourhood associations in Bloemfontein to monitor the occurrence of the beetle in the city.

Ornamental trees are dying all over South Africa, and it is feared that certain fruit and nut trees are also in danger. This is cause for great concern, not only among ecologists, farmers, foresters, and landscapers, but for homeowners as well. In private gardens and on streets throughout the country, trees that are afflicted include English oak, Chinese and Japanese maples, boxelder, and sweetgum.
 
The cause of all this havoc is a small 2-mm beetle, known as the Polyphgous shothole borer (PSHB; Euwallacea fornicatus) that originates from Southeast Asia.

Working to find a solution

"Based on damage seen in the USA and Israel, there is significant danger of losing many of our ornamental trees as well as fruit and certain nut trees in South Africa,” says Prof Wijnand Swart, Professor of Plant Pathology and Discipline Head in the Department of Plant Pathology at the University of the Free State (UFS).

Cases of afflicted trees were reported from all provinces in South Africa, except for Mpumalanga. Countries such as Israel and the USA have also suffered great losses as a result of this beetle.  

Research is being conducted on the beetle and its associated fungus, Fusarium euwallaceae, in order to understand their relationship and hopefully find a solution to stop, or at least manage, the invasion of trees. To investigate the largest geographical outbreak of this beetle in the world, academics from seven universities in South Africa are working together with the Forestry and Agricultural Biotechnology Institute (FABI) at the University of Pretoria through a multi-institutional and multi-disciplinary research network. UFS researchers are part of this network.
 
Senior Lecturer in the UFS Department of Plant Sciences, Dr Gert Marais, is conducting research on the PSHB and its associated fungi, with the focus on pecan trees, in conjunction with the South African Pecan Nut Producers' Association. Cases of infected pecan-nut trees were reported in the Northern Cape as well as in Nelspruit. 
 
Prof Swart is working with entomologists in the UFS Department of Zoology and Entomology to find a biological control agent to parasitise the beetle. “I have already found one instance of a parasitic wasp associated with the beetle and will continue to search for more specimens during the coming summer,” he commented. 
 
Understanding the beetle

The first cases of infected trees were discovered in 2017 when Dr Trudi Paap, associated with FABI and the South African National Biodiversity Institute, conducted a survey of pests and diseases in and around National Botanical Gardens in South Africa. 
 
FABI has been studying the tree killer intensively to find out more about its life cycle. The term ‘polyphagous’ refers to the ability of the PSHB to infest many different tree species.

On their website, FABI states that an important distinction is being made between different types of infestations. “Reproductive host trees are trees that are infested by the beetle and where it successfully establishes a breeding gallery in which the fungus grows, where eggs are laid, and larvae develop into mature adults, thus completing its life cycle. The majority of reproductive hosts eventually succumb to the disease symptoms caused by the fungus.”
 
“Non-reproductive host trees are trees where the beetle attacks, penetrates, and inoculates the fungus, which then starts to grow in the sapwood. However, the beetle either leaves or dies without reproducing in these trees. The fungus can eventually kill or damage reproductive hosts, but many of the tree species on this list seem to be unaffected.”
 
Involving the community

The situation also provides an opportunity for communities to directly benefit from research conducted by tertiary institutions. Prof Swart is working together with two neighbourhood associations in Bloemfontein to monitor the occurrence of the beetle in the city and surrounding areas. 

He urges residents in the Mangaung Metro who find instances of infected trees, to report it to Duart Hugo (duarthugo99@gmail.com ), who is compiling a database of infected trees in the area. 
 
FABI advises homeowners to cut down heavily infested reproductive host trees. Should you decide to burn the wood, note that beetles will fly away when the wood becomes hot or when smoke appears. Do not burn infested trees in uninfected areas.

Other interesting material

News Archive

Researchers reach out across continents in giraffe research
2015-09-18

Dr Francois Deacon and Prof Fred Bercovitch
busy with field work.

Researcher Dr Francois Deacon from the Department of Animal, Wildlife, and Grassland Sciences at the University of the Free State is conducting research with renowned wildlife scientist, Prof Fred Bercovitch, from the Center for International Collaboration and Advanced Studies in Primatology, Kyoto University Primate Research Institute in Japan.

Dr Deacon’s ground-breaking research has attracted international media attention. Together with Prof Nico Smit, he equipped giraffes with GPS collars, and conducted research based on this initiative. “Satellite tracking is proving to be extremely valuable in the wildlife environment. The unit is based on a mobile global two-way communication platform, utilising two-way data satellite communication, complete with GPS systems.”

Prof Bercovitch was involved with GPS tracking from elephants to koala bears.

Some of the highlights of the joint research on giraffes by Dr Deacon and Prof Bercovitch focus on:
 
• How much time do certain giraffes spend with, and away from, one another
• How do the home ranges of herds and individual giraffe overlap
• Do genetically-related animals spend more time together than non-genetically-related animals
• How much time do the young bulls, adult bulls, and dominant bulls spend with cow herds
• Herd interactions and social behaviours of giraffe
• The role of the veld and diet on animal behaviour and distribution

 

Their research article, “Gazing at a giraffe gyroscope: Where are we going?”, which was published in the African Journal of Ecology, assesses recent research by exploring five primary questions:

- How many (sub) species of giraffe exist?
- What are the dynamics of giraffe herds?
- How do giraffe communicate?
- What is the role of sexual selection in giraffe reproduction?
- How many giraffe reside in Africa?

They conclude this article by emphasising that the most essential issue is to develop conservation management plans that will save a wonderful species from extinction, and which will also enable scientists to conduct additional research aimed at answering their five questions.

In addition, they are working together on a grand proposal to get National Geographic to cover their work.

 

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept