Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 December 2023 | Story LUNGA LUTHULI | Photo SUPPLIED
Milton Mogotsi
Charting unexplored territories: Milton Mogotsi, UFS PhD student, clinches victory in National 3MT Competition, unravelling infant enteric virome complexities, poised to revolutionise virology.

Milton Mogotsi, a PhD student at the University of the Free State (UFS), has secured a remarkable victory in the esteemed National 3 Minute Thesis competition (3MT), rising above formidable competition nationwide. This achievement follows Mogotsi’s earlier successes at faculty and institutional levels, where his presentations on the enteric virome of infants in the Free State stood out for their brilliance and significance.

The annual competition serves as a platform for postgraduate students to enhance their academic, presentation, and research communication skills by succinctly explaining their research to an intelligent but non-specialist audience within a concise 3-minute timeframe.

Reflecting on his initial reaction to the news, Mogotsi expressed a mix of shock and excitement. “I was genuinely shocked and excited when declared the winner,” he shared. This victory marked a significant milestone for Mogotsi, as a first-time participant, showcasing the excellence of both the UFS and the Faculty of Health Sciences.

Exploring uncharted territories

Mogotsi’s groundbreaking research delves into the unexplored domain of the enteric virome in infants, a subject inspired by his earlier master’s study in microbiology. “I was first introduced to this research during my master’s degree, and compelling findings motivated me to pursue further studies,” explained Mogotsi. Guided by his mentor, Prof Martin Nyaga, Mogotsi's doctoral journey unfolded into a profound exploration of the complexities of viruses colonising infants' guts and their implications on infant health.

Sharing key findings, Mogotsi highlighted that, despite detecting several disease-causing viruses in infants’ guts, none exhibited clinical symptoms. This emphasises the role of immunity and protective measures like breastfeeding. He also identified plant viruses, potentially transmitted through the environment or food sources, raising intriguing questions about infants’ exposure.

His pioneering use of viral metagenomics in unravelling the enteric virome’s complexity underscored its potential in understanding human health and disease. “Viral metagenomics has become a fundamental tool, shedding light on the composition of the infant’s enteric virome,” explained Mogotsi. 

Navigating challenges

Despite challenges, including disruptions due to COVID-19 and participant withdrawals, Mogotsi persevered, underscoring the importance of a longitudinal approach in comprehending the infant virome’s development over time. His success in the competition not only boosted his confidence but also expanded his networks, providing invaluable opportunities to present his findings internationally.

Mogotsi's advice to aspiring researchers mirrors his own journey: clarity of purpose, resilience in the face of challenges, fostering mentor relationships, and making the most of available resources. His groundbreaking work is poised to influence policy, guide vaccine strategies, and reshape our understanding of infant health.

As Mogotsi approaches the completion of his PhD, the future holds promising horizons for this trailblazing researcher, poised to leave an indelible mark on the world of virology and infant health.

News Archive

Water research aids decision making on national level
2015-05-25

Photo: Leonie Bolleurs

With water being a valuable and scarce resource in the central regions of South Africa, it is no wonder that the UFS has large interdisciplinary research projects focusing on the conservation of water, as well as the sustainable use of this essential element.

The hydropedology research of Prof Pieter le Roux from the Department of Soil, Crop and Climate Sciences and his team at the UFS focuses on Blue water. Blue water is of critical importance to global health as it is cleared by the soil and stored underground for slow release in marshes, rivers, and deep groundwater. The release of this water bridges the droughts between showers and rain seasons and can stretch over several months and even years. The principles established by Prof Le Roux, now finds application in ecohydrology, urban hydrology, forestry hydrology, and hydrological modelling.

The Department of Agricultural Economics is busy with three research projects for the Water Research Commission of South Africa, with an estimated total budget of R7 million. Prof Henry Jordaan from this department is conducting research on the water footprint of selected field and forage crops, and the food products derived from these crops. The aim is to assess the impact of producing the food products on the scarce freshwater resource to inform policy makers, water managers and water users towards the sustainable use of freshwater for food production.

With his research, Prof Bennie Grové, also from this department, focuses on economically optimising water and electricity use in irrigated agriculture. The first project aims to optimise the adoption of technology for irrigation practices and irrigation system should water allocations to farmers were to be decreased in a catchment because of insufficient freshwater supplies to meet the increasing demand due to the requirements of population growth, economic development and the environment.

In another project, Prof Grové aims to economically evaluate alternative electricity management strategies such as optimally designed irrigation systems and the adoption of new technology to mitigate the substantial increase in electricity costs that puts the profitability of irrigation farming under severe pressure.

Marinda Avenant and her team in the Centre for Environmental Management (CEM), has been involved in the biomonitoring of the Free State rivers, including the Caledon, Modder Riet and part of the Orange River, since 1999. Researchers from the CEM regularly measures the present state of the water quality, algae, riparian vegetation, macro-invertebrates and fish communities in these rivers in order to detect degradation in ecosystem integrity (health).

The CEM has recently completed a project where an interactive vulnerability map and screening-level monitoring protocol for assessing the potential environmental impact of unconventional gas mining by means of hydraulic fracturing was developed. These tools will aid decision making at national level by providing information on the environment’s vulnerability to unconventional gas mining.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept