Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 January 2024 Photo SUPPLIED
Prof Frank Zachos
Prof Frank Zachos, an Affiliated Professor in the Department of Genetics, participated in a study on the genetic diversity of species published in the prestigious Nature Ecology & Evolution.

Early this year, an article examining the monitoring of genetic diversity in Europe – indicating which countries are doing it, for which and for how many species – was published in the prestigious Nature Ecology & Evolution. Prof Frank Zachos, an Affiliated Professor in the Department of Genetics at the University of the Free State (UFS) in Bloemfontein, South Africa, participated in this study, which was co-conducted by 52 scientists representing 60 universities and research institutes from 31 countries.

According to Prof Zachos, who is also a scientist and curator of mammals at the Natural History Museum in Vienna in Austria – one of the world’s largest natural history museums with more than 30 million specimens – genetic diversity is crucial for species to adapt to climate change.

Genetic diversity key to species survival

Genetic diversity is one of the keys to species survival. He points out that in 2022, the International Convention on Biological Diversity (CBD) has placed increased emphasis on the need to protect the genetic diversity found in wild species – a fundamental component of biological diversity that has been generally neglected in the past.

Prof Zachos explains that global warming is already putting pressure on many species in Europe and elsewhere, particularly those with populations at the climatic limits of their range. These populations are not only at risk of extinction, but also tend to carry genetic variants favoured by natural selection for survival in challenging environments. “These ecologically peripheral regions may, therefore, function as reservoirs from which, through gene flow, adaptive variants can spread into populations of the core range that will be affected by climate change later. This increases the overall resilience of species,” he says. 

He emphasises that analysing genetic diversity and its changes over time in populations located in areas with challenging environmental conditions is especially important for conservation.

Better monitoring of species needed

In a statement, he mentions that this study reveals that current efforts to monitor genetic diversity in Europe are incomplete and insufficient.

According to the new study, more efforts are necessary, particularly in the southeast of Europe (Turkey and the Balkans), as this region is underrepresented, but at the same time strongly affected by climate change, possibly harbouring many reservoir populations that can adapt well to the challenges posed by environmental shifts.

Prof Zachos adds that monitoring efforts were significantly biased towards certain taxonomic groups, as they have found many monitoring projects targeting large carnivores such as brown bears and wolves, iconic species that are also of political relevance.

He explains that they will, however, be less affected by climate change than, for example, amphibians and many tree species. “Yet, the latter are only rarely included in genetic monitoring projects,” says Prof Zachos, who is of the opinion that a monitoring strategy with less geographic and taxonomic bias, along with systematic targeting of full environmental gradients and high-biodiversity regions, would be an important contribution towards the protection of threatened species – many of which also provide invaluable services to humans, such as crop pollination or pest control.

Better support for ecosystem conservation

He holds the view that this is not only restricted to Europe, but applies globally, especially in superdiverse regions such as Southern Africa.

Prof Zachos states that, considering recent agreements aimed at halting biodiversity decline – of which South Africa is a signatory country – the study also points out the urgent need for improved international monitoring of species, and especially their genetic diversity. “This will facilitate better land-use planning and support for ecosystem conservation and restoration actions, ensuring the survival of species and the services they provide,” he says.

News Archive

Little ‘Devil’s Worm’ on Top 10 New Species list
2012-05-29

 

Halicephalobus mephisto (Devil’s Worm)
Photo: Supplied
29 May 2012

A minuscule little worm found and researched with the assistance of researchers at the university has made it onto the list of Top 10 New Species of the world. The list was published by the International Institute for Species Exploration (IISE) at Arizona State University and a committee of scientists from around the world. It lists the top ten new species described in 2011.

An article on the new worm species appeared in the authoritative journal Nature in June 2011.
 
Prof. Esta van Heerden, leader of the university’s research team, says, “In our wildest dreams, we could not have imagined that we would get so much reaction from the worm’s discovery. We had to do so many checks and balances to convince Nature that the worm could survive in the old and warm water. We were very excited when the article was accepted but the media reaction was unbelievable.”
 
The tiny nematode, Halicephalobus mephisto (Devil’s Worm) of about 0,5 mm in length, is the deepest-living terrestrial multi-cellular organism on earth. It was discovered in the Beatrix gold mine near Welkom at a depth of 1,3 km.
 
The IISE says in a statement the species is remarkable for surviving immense underground pressure as well as high temperatures. The borehole water where this species lives has not been in contact with the earth’s atmosphere for the last 4 000 to 6 000 years.  
 
This top-10 list includes a sneezing monkey; a beautiful, but venomous jellyfish; a fungus named after a popular TV cartoon character; a night-blooming orchid; an ancient walking cactus creature; and a tiny wasp. A vibrant poppy, a giant millipede and a blue tarantula also made it onto the list.
 
The international selection committee made its choice from more than 200 nominations. They looked for species that captured the attention because they were unusual or because they had bizarre traits. Some of the new species have interesting names.
 
Prof. Van Heerden says, “We are very thankful for the exposure that the university gets as a result of the inclusion on the list and we enjoy the international cooperation immensely.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept