Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 January 2024 Photo SUPPLIED
Prof Frank Zachos
Prof Frank Zachos, an Affiliated Professor in the Department of Genetics, participated in a study on the genetic diversity of species published in the prestigious Nature Ecology & Evolution.

Early this year, an article examining the monitoring of genetic diversity in Europe – indicating which countries are doing it, for which and for how many species – was published in the prestigious Nature Ecology & Evolution. Prof Frank Zachos, an Affiliated Professor in the Department of Genetics at the University of the Free State (UFS) in Bloemfontein, South Africa, participated in this study, which was co-conducted by 52 scientists representing 60 universities and research institutes from 31 countries.

According to Prof Zachos, who is also a scientist and curator of mammals at the Natural History Museum in Vienna in Austria – one of the world’s largest natural history museums with more than 30 million specimens – genetic diversity is crucial for species to adapt to climate change.

Genetic diversity key to species survival

Genetic diversity is one of the keys to species survival. He points out that in 2022, the International Convention on Biological Diversity (CBD) has placed increased emphasis on the need to protect the genetic diversity found in wild species – a fundamental component of biological diversity that has been generally neglected in the past.

Prof Zachos explains that global warming is already putting pressure on many species in Europe and elsewhere, particularly those with populations at the climatic limits of their range. These populations are not only at risk of extinction, but also tend to carry genetic variants favoured by natural selection for survival in challenging environments. “These ecologically peripheral regions may, therefore, function as reservoirs from which, through gene flow, adaptive variants can spread into populations of the core range that will be affected by climate change later. This increases the overall resilience of species,” he says. 

He emphasises that analysing genetic diversity and its changes over time in populations located in areas with challenging environmental conditions is especially important for conservation.

Better monitoring of species needed

In a statement, he mentions that this study reveals that current efforts to monitor genetic diversity in Europe are incomplete and insufficient.

According to the new study, more efforts are necessary, particularly in the southeast of Europe (Turkey and the Balkans), as this region is underrepresented, but at the same time strongly affected by climate change, possibly harbouring many reservoir populations that can adapt well to the challenges posed by environmental shifts.

Prof Zachos adds that monitoring efforts were significantly biased towards certain taxonomic groups, as they have found many monitoring projects targeting large carnivores such as brown bears and wolves, iconic species that are also of political relevance.

He explains that they will, however, be less affected by climate change than, for example, amphibians and many tree species. “Yet, the latter are only rarely included in genetic monitoring projects,” says Prof Zachos, who is of the opinion that a monitoring strategy with less geographic and taxonomic bias, along with systematic targeting of full environmental gradients and high-biodiversity regions, would be an important contribution towards the protection of threatened species – many of which also provide invaluable services to humans, such as crop pollination or pest control.

Better support for ecosystem conservation

He holds the view that this is not only restricted to Europe, but applies globally, especially in superdiverse regions such as Southern Africa.

Prof Zachos states that, considering recent agreements aimed at halting biodiversity decline – of which South Africa is a signatory country – the study also points out the urgent need for improved international monitoring of species, and especially their genetic diversity. “This will facilitate better land-use planning and support for ecosystem conservation and restoration actions, ensuring the survival of species and the services they provide,” he says.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept