Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 April 2019 | Story Leonie Bolleurs | Photo Sonia Small
Summer School
Perspectives on aquatic biomonitoring from Germany and Southern Africa were discussed at the recent German-Southern African Summer School 2019.

Water is a basic resource upon which communities rely for their health, well-being, and economic development and growth. Many countries struggle with the negative consequences of poor surface-water quality, which may threaten their food security and livelihoods.

The Centre for Environmental Management at the University of the Free State recently co-presented the German-Southern African Summer School 2019 with the Dresden University, Germany, on its Bloemfontein Campus. 

Discussions at the Summer School – attended by 66 delegates from Germany and Southern Africa – mainly focused on aquatic biomonitoring and included perspectives from Germany and Southern Africa. 

Questions such as ‘How to improve water quality?’ and ‘What about the impact of the catchment area, land use, and agriculture on water quality?’ were discussed. 

According to Marinda Avenant, Lecturer in the Centre for Environmental Management, a two-pronged approach is often used: first, ecosystem-based biomonitoring, and second, specialised water quality and toxicity-assessment methods applied at specific sites in order to identify problems.

Presenters from academia, government authorities, and the private sector shared theoretical concepts and practical experiences of establishing aquatic biomonitoring networks in Germany, South Africa, Namibia, Lesotho, Eswatini (Swaziland), and Zambia. 

The Summer School focused on an integrated approach, including catchment processes, hydrology, geomorphology, and land use, as well as chemical and biological monitoring. 

Delegates also undertook a field trip to Mokala National Park for a practical demonstration of water-quality monitoring as part of the programme. 

The Volkswagen Foundation (Germany) funded the Summer School.


News Archive

Research helps farmers save with irrigation
2017-02-15

Description: Irrigation research Tags: Irrigation research

Marcill Venter, lecturer in the Department of
Agricultural Economics at the University of the
Free State, has developed the mathematical
programming system, Soil Water Irrigation
Planning and Energy Management in order to
determine irrigation pump hours.
Photo: Rulanzen Martin

Her advice to farmers is that they should make sure they are aware of the total cost (investment and operating costs) of an irrigation system. In most cases the investment cost is low, but the operating cost over the lifetime of the system is high.

“It is very important to have a look at the total cost and to install the most economic system,” says Marcill Venter, lecturer at the University of the Free State (UFS), who has done research on the economic sustainability of water-pipe systems.

Irrigation systems important components for farming
This research comes at a time when many farmers are relying on their irrigation systems due to persistent drought and low rainfall during 2016. South Africa has also experienced an abnormal increase in electricity tariffs in recent years. Due to tariff increases which threaten the future profitability of irrigation producers, the Water Research Commission (WRC) has launched and financed a project on the sustainable management of irrigation farming systems. “I had the opportunity to work on the project as a researcher,” says Venter.

The heart of every irrigation system is the water pipes that bring life to crops and livestock, and this is what Venter’s research is about. “Water pipes are part of the whole design of irrigation systems. The design of the system impact certain factors which determine the investment and operating costs,” she says.

Mathematical system to help farmers
Venter and Professor Bennie Grové, also from the Department of Agricultural Economics at the UFS, designed the Soil Water Irrigation Planning and Energy Management (SWIP-E) programming model as part of the WRC’s project, as well as for her master’s degree. “The model determines irrigation pump hours through a daily groundwater budget, while also taking into account the time-of-use electricity tariff structure and change in kilowatt requirements arising from the main-line design,” says Venter. The model is a non-linear programming model programmed in General Algebraic Modeling System (GAMS).

Design of irrigation system important for sustainability

The main outcome of the study is that the time-of-use electricity tariff structure (Ruraflex) is always more profitable than the flat-rate structure (Landrate). The interaction between the management and design of a system is crucial, as it determines the investment and operating costs. Irrigation designers should take the investment and operating cost of a system into account during the design process. The standards set by the South African Irrigation Institute (SAII) should also be controlled and revised.

Water-pipe thickness plays major role in cost cuts
There is interaction between water-pipe thickness, investment and operating costs. When thinner water pipes are installed, it increases the friction in the system as well as the kilowatt usage. A high kilowatt increases the operating cost, but the use of thinner water pipes lowers the investment cost. Thicker water pipes therefore lower the friction and the kilowatt requirements, which leads to lower operating costs, but thicker pipes have a higher investment cost. “It is thus crucial to look at the total cost (operating and investment cost) when investing in a new system. Farmers should invest in the system with the lowest total cost,” says Venter.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept