Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 July 2020 | Story Nitha Ramnath | Photo UFS photo archive

The Department of Business Management within the Faculty of Economic and Management Sciences is one of four successful recipients of the Nurturing Emerging Scholars Programme (NESP), which aims to recruit honours graduates who demonstrate academic ability and express an early interest in the possibility of an academic career. 

 “The NESP is a mechanism that addresses a potential shortcoming in the department in the medium to long term. Most of the academics in the department specialise either in entrepreneurship or marketing. As such, the availability of academics with interdisciplinary business knowledge who can teach and do research across the different sub-fields of business management is limited,” says Prof Brownhilder Neneh, Associate Professor in the Department of Business Management.

Once graduates enter the programme – as NESP master’s graduates they form part of a resource pool from which new academics can be recruited. 

Prof Neneh continues: “Considering the imminent retirement of academics in the department, the NESP provides an opportunity to recruit an academic who is able to work with experienced academics, gain experience, and ‘prepare’ the person to become an expert across the different fields in the department.”

“This programme would assist in succession planning within the department as well as training individuals within academia,” she says. 

According to Prof Neneh, access to this funding opportunity will further strengthen and expand the path that the department has embarked upon as far as striving for excellence in teaching, research, and community engagement is concerned, thereby contributing to address key societal challenges. “Appointing an NESP candidate would be an ideal opportunity to recruit an academic who will be able to work with the senior staff and gain experience and teaching/research competencies relevant to the 4IR, and ‘prepare’ the person to become the business management expert in the department,” she says.

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept