Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 October 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Cornel Bender
Dr Cornel Bender received her PhD qualification at the virtual graduation ceremonies in October. The title of her thesis is: Stem rust resistance in South African wheat and triticale.

The rapid distribution of disease-causing organisms such as Ug99, a wheat stem-rust pathotype, pointed out just how vulnerable global cereal production is to disease outbreaks.

These cereals include wheat, barley, rye, oats, triticale, rice, maize, and millet and are one of the most important food sources for human consumption.

According to Dr Cornel Bender, the projected world population of 10 billion in 2057 requires a growth of more than 40% in cereal production. Wheat is grown on more hectares than any other cereal and is one of the most important sources of calories for humans. However, the growth rate of wheat yields has declined from the 1960s to the 1990s. Therefore, it is essential to increase global wheat production.

“With the regular appearance of more aggressive stem rust pathotypes in South Africa, there is a constant need to discover new sources of resistance, understand the genetic base of presently deployed sources in wheat, triticale and barley cultivars, and to manipulate the deployment of resistant sources through a more sustainable approach,” says Dr Bender.

Her PhD thesis, titled: Stem rust resistance in South African wheat and triticale, includes various fundamental aspects for the effective management of stem rust in South Africa.

Dr Bender is a Professional Officer in the Division of Plant Pathology in the Department of Plant Sciences, who received her PhD at the virtual graduation ceremonies in October.

Innovative and cost effective

Her promotors, Prof Zakkie Pretorius, Research Fellow, and Dr Willem Boshoff, Senior Lecturer in the Department of Plant Sciences, believe that she used an innovative approach to develop a cost-effective phenotyping method to select for more durable resistance types in a controlled greenhouse environment.

“In the past, results obtained from field trials used to assess adult plants for stem-rust resistance, were often influenced by abiotic factors, were seasonable in nature, expensive, and time consuming; therefore, the development of a dependable greenhouse screening system provides an important additional instrument for rust research,” says Dr Bender.

She adds that the greenhouse technique is used worldwide to screen for adult plant resistance and contribute to save time and money.

Broadening our knowledge

“Inheritance studies were undertaken to determine the genetic base of stem-rust resistance in selected South African wheat and triticale cultivars (developed from wheat/rye crosses) through seedling analysis as well as greenhouse and fieldwork,” she says.

Dr Bender believes the use and development of different resistance screening methods, the elucidation of host genetics, as well as the use of histological and microscopic methods to study early resistance responses, broaden our knowledge and understanding of stem-rust resistance in South African wheat and triticale cultivars.

Ultimately, rust researchers, grain producers, and also the general public – through access to their daily bread – will benefit from her study.

News Archive

Expansion to Physics building officially opened on Bloemfontein Campus
2016-05-06

Description: New Physics building  Tags: New Physics building

The newly-opened addition to the Physics Building on the Bloemfontein Campus.
Photo: Charl Devenish

An extension to the Department of Physics at the University of the Free State (UFS) was officially opened on the Bloemfontein Campus on 20 April 2016.

“This started off about five years ago when we were talking about not having enough room for large classes. Prof Matie Hoffman suggested that we build a large lecture room on our parking space,” said Prof Hendrik Swart, Professor in the Department of Physics as he addressed guests at the official opening ceremony.

“A year later, we received a Sarchi Research Chair [South African Research Chairs Initiative] on Advanced and Luminescent Materials. We needed more office and laboratory space. The two ideas were combined and presented to the university’s senior management,” he added.

When the university was founded in 1904, Prof James Lyle was appointed to head up the Physics and Chemistry departments. Five years later, a single room was allocated for the Physics laboratory in the main building upon its completion. In 1947, the old Physics building was designed and constructed. Fast forward 69 years, the department has reached another milestone. Facilities accommodated by the expansion include a new telescope for astrophysics experiments, a basement for storing old equipment, as well as a sliding trap door which allows heavy goods to be elevated into the building from the ground floor. The telescope is one of the many unique features of the building given its capacity to expose graduate students to the basic techniques of radio astronomy, especially in light of the fact that the SKA (Square Kilometre Array) project which is in progress.

“Our department is extremely strong at this stage, and a bright future lies ahead,” said Prof Koos Terblans, the Head of Department. The opening also served to celebrate the 103 publications achieved by the department last year.

Dr Lis Lange, Vice-Rector: Academic is proud of the heights reached by the department to date. “The Department of Physics is undoubtedly one of the jewels in the crown of our university, and we are very proud of its developments. Universities are built on legacies, and they are also about change, which is what this department has been demonstrating.”

The expansions to the building with its top-class facilities, was constructed at a cost of R25 million – an infrastructure grant courtesy of the Department of Higher Education and Training.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept