Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 January 2023 | Story Leonie Bolleurs | Photo Leonie Bolleurs
At the 31st Annual Conference of SAARMSTE, were from the left: Prof Loyiso Jita, Dean of the UFS Faculty of Education; Prof Dr Susanne Prediger, plenary speaker, Prof Francis Petersen, UFS Rector and Vice-Chancellor; Dr Maria Tsakeni, Head of the UFS Department of Mathematics, Natural Science and Technology Education and Conference Chair; Dr Tulsi Morar, SAARMSTE President; and Prof Mogege Mosimege, Research Chair in Mathematics Education and Director of Initial Teacher Education at the UFS.

The University of the Free State (UFS) hosted the 31st Annual Conference of the Southern African Association for Research in Mathematics, Science and Technology Education (SAARMSTE) on its Bloemfontein Campus from 17 to 19 January 2023.

After two years of hosting the SAARMSTE conference virtually, it was presented as a hybrid conference for the first time. In attendance were delegates from the continent, the USA, India, Australia, and Europe.

The conference theme was: Intersecting Research, Policy and Practice for a Sustainable Praxis in Mathematics, Science and Technology Education: New possibilities and directions for the post-COVID-19 Pandemic Era.

 

Sharing best practices and discussing common challenges

SAARMSTE President, Dr Tulsi Morar from the Nelson Mandela University, believes that the conference provided fertile ground for delegates to share best practices, to discuss common challenges experienced during the pandemic, and to celebrate how these challenges were overcome. "It is only through our reliance and strength that we have succeeded, and because of our experiences, we can grow and innovate to be better prepared for any further challenges," he said.

Opening the event was Prof Francis Petersen, Rector and Vice-Chancellor of the UFS. He said the conference provided meaningful discussions for the challenges the world has to solve, stating that with challenges also come possibilities.

“We live in a time of significant change in the realm of technology, which has an impact on the world of work. Graduates will need to change their thinking in the world of work. They need to understand the future world of work,” Prof Petersen stated.

He also touched on curriculum reform, saying that a critical challenge for South Africa's education system is the decolonisation of the curriculum. What is being taught must make meaningful sense in our context. “The UFS has made significant progress in curriculum transformation since 2016,” he added.

With delegates as well as speakers from other countries present at the conference, Prof Petersen also talked about the UFS’ Global Citizens initiative. He said no country can operate in isolation. We need to learn from each other to move forward as a collective. “It is also vital to deliver global citizens,” he said.

“The importance of the SAARMSTE conference cannot be overemphasised in our current education landscape. We need sustainable relationships to be developed at conferences such as these in order to ask questions, think differently, and renew ourselves,” he concluded, stating that the role of humanities and social sciences in society is critical and that SAARMSTE can add value in this context.

 

Thinking indigenously about Technology education and its implementation

Contributing to robust discussions on Science, Technology, Engineering and Mathematics education, three keynote speakers shared their views during the three-day conference.

Prof Dr Susanne Prediger, Director of the newly established DZLM, the German National Centre for Mathematics Teacher Education, delivered the first keynote address of the conference. She talked about Fostering students’ understanding of procedures and underlying basic concepts: Design research for mathematics classrooms and teacher professional development in the post-pandemic era.

She said that although providing students with rich and deep mathematical learning opportunities is a common request in Mathematics education, many students are still only exposed to superficial learning. According to her, this was aggravated by the school closures during the pandemic and will continue in the post-pandemic era if Mathematics teachers are not sufficiently supported and prepared.

The second plenary was delivered by Prof Mishack T Gumbo from the University of South Africa. He is a Research Professor of Indigenous Technology Knowledge Systems Education in the Department of Science and Technology Education. The title of his talk was: A relook into Technology Education: Raising a transformational issue, where he focused on education, specifically the curriculum of Technology Education as a school subject.

The third plenary was delivered by Dr Gillian Roehrig from the University of Minnesota in the United States. Dr Roehrig is known for her research that explores issues of professional development for K-12 Science teachers, with a focus on the implementation of integrated STEM learning environments and the induction and mentoring of beginning secondary Science teachers.

Her paper, titled The Hows and Whys of Integrated STEM Education, explored the development of a conceptual and curricular framework for integrated STEM, and the benefits of using interdisciplinary approaches to address the policy goals of preparing students as STEM-literate citizens and for the future STEM workforce.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept