Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 April 2019 | Story Moeketsi Mogotsi | Photo Barend Nagel
KovsieCyberSta
2018/2019 #KovsieCyberStas Georgina Mhlahlo and Karabo Lekomanyane are about to make way for two new cool kids on the block.

The search for the next #KovsieCyberSta is on. The UFS is looking for two cool new kids on the block to take over the reins from Georgina and Karabo as the official UFS Social Media ambassadors.
 
The two individuals will hold the title of #KovsieCyberSta for a period of 12 months. As #KovsieCyberStas, they will cover events on and around campus, while filming and presenting short video clips to give fellow Kovsies some insight into these events across the UFS’s digital platforms.

The #KovsieCyberSta search will follow the following simple steps: 

1. Upload a 45-60-second audition video on Instagram, Twitter or Facebook and tag the UFS while using #KovsieCyberSta. In your video, tell us why you should be the next #KovsieCyberSta.
2. You can also send your audition videos to socialmedia@ufs.ac.za
3. The 10 most impressive auditions will be shortlisted and posted on the UFS pages for public voting on 3 May 2019.
4. The Kovsie community will then decide who gets to win, and the winners will be announced on 8 May 2019.

The deadline for submitting video auditions is 1 May 2019 at midnight.

At the end of their term, #KovsieCyberStas will receive a letter of recommendation and a portfolio of their work to add to their showreel.

Please note that students must return to the UFS for the first semester in 2020. 
No team submissions are allowed. (only one person per audition video)

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept