Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 April 2019 | Story Valentino Ndaba
Be Safe on road
Be safe on the roads: Prevention is better than a hospital ward or coffin.

Safety starts with you, non-compliance ends you. A traffic spike over the Easter holidays does not justify disobeying road rules. The university is counting on all students, both drivers and pedestrians, to continue prioritising safety on the roads.

Don’t be a statistic, take responsibility
The 2018 Preliminary Easter Road Safety Report issued by the Department of Transport, indicated that most accidents were caused by irresponsibility.  “In 2018, human factor contributed 89,5% to crashes as compared to the 74,3% in 2017. The number of jay-walking pedestrians killed on our roads also increased to 38% as compared to 25,2% in 2017,” said Minister of Transport, Blade Nzimande.

The university implores you to play a role in reducing these numbers in 2019.

On driving and cellphones
According to Arrive Alive, the use of communication devices while driving is prohibited. “No person shall drive a vehicle on a public road while holding a cellular or mobile telephone or any other communication device in one or both hands or with any other part of the body, unless such a device is affixed to the vehicle or is part of the fixture in the vehicle.”

Pedestrian duties
Pedestrians are encouraged to practice caution when using sidewalks and while crossing the road. When walking, face oncoming traffic and pay attention to traffic signs so as not to constitute a source of danger to yourself or to traffic.

Safe speed saves lives
A general speed limit of 60 kilometres per hour shall apply to all public roads within urban areas, 100 kilometres per hour on public roads, and 120 kilometres per hour on freeways. Abide by these speed limits, unless stated otherwise by traffic signs.

More tips on drunken driving, wearing seat belts, and other aspects of road safety are easily available on the Arrive Alive website.

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept