Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 April 2019 | Story Valentino Ndaba
Be Safe on road
Be safe on the roads: Prevention is better than a hospital ward or coffin.

Safety starts with you, non-compliance ends you. A traffic spike over the Easter holidays does not justify disobeying road rules. The university is counting on all students, both drivers and pedestrians, to continue prioritising safety on the roads.

Don’t be a statistic, take responsibility
The 2018 Preliminary Easter Road Safety Report issued by the Department of Transport, indicated that most accidents were caused by irresponsibility.  “In 2018, human factor contributed 89,5% to crashes as compared to the 74,3% in 2017. The number of jay-walking pedestrians killed on our roads also increased to 38% as compared to 25,2% in 2017,” said Minister of Transport, Blade Nzimande.

The university implores you to play a role in reducing these numbers in 2019.

On driving and cellphones
According to Arrive Alive, the use of communication devices while driving is prohibited. “No person shall drive a vehicle on a public road while holding a cellular or mobile telephone or any other communication device in one or both hands or with any other part of the body, unless such a device is affixed to the vehicle or is part of the fixture in the vehicle.”

Pedestrian duties
Pedestrians are encouraged to practice caution when using sidewalks and while crossing the road. When walking, face oncoming traffic and pay attention to traffic signs so as not to constitute a source of danger to yourself or to traffic.

Safe speed saves lives
A general speed limit of 60 kilometres per hour shall apply to all public roads within urban areas, 100 kilometres per hour on public roads, and 120 kilometres per hour on freeways. Abide by these speed limits, unless stated otherwise by traffic signs.

More tips on drunken driving, wearing seat belts, and other aspects of road safety are easily available on the Arrive Alive website.

News Archive

UFS research could light up South African homes
2016-01-21

Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology, is using her research to provide solutions to the energy crises in South Africa.

A young researcher at the university is searching for the solution to South Africa’s energy and electricity problems from a rather unlikely source: cow dung.

“Cow dung could help us power South Africa,” explains Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology.

Reitumetse’s research is trying to understand how the bacteria works that is responsible for producing biogas.

“Biogas can be used for cooking, heating, lighting and powering generators and turbines to make electricity. The remaining liquid effluent can fertilise crops, as it is high in nitrogen, phosphorus and potassium.”

By using cow dung and food waste to produce biogas, we will be able to lower greenhouse gases.

Biogas is produced in a digester - an oxygen-free space in which bacteria break down or digest organic material fed into the system. This process naturally produces biogas, which is mainly a mixture of methane and carbon dioxide.

“Many countries, such as Germany and the United States, have begun generating electricity from cow dung and food waste, through a process known as biogas production. In South Africa, a number of industries, including waste-water treatment facilities and farms, have caught on to this technology, using it to generate heat and to power machines.”

Until recently the world has relied heavily on electricity derived from fossil fuels such as coal, natural gas and oil. Once these fuels have been extracted from underground reservoirs, they are treated or cleaned, transported to power plants and transformed into the electricity that will reach your house. Fossil fuels are considered a ‘dirty’ energy source which gives off greenhouse gases when burned. Those gases are the major contributing factor to climate change.

“We know very little about the interaction of the bacteria inside the biogas digester. To use biogas as a sustainable fuel source, we need to understand and describe the bacteria population and growth dynamics inside the digester to produce biogas optimally. Currently we are testing a variety of feedstock, including bran, maize and molasses, for biogas production potential, as well as optimising the conditions leading to maximum biogas production. We are also exploring the potential to use the effluent as fertiliser on local farms. The ultimate goal is to have biogas systems that will supply our university with clean energy.”


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept