Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 April 2019 | Story Valentino Ndaba | Photo Valentino Ndaba
William Kandowe, principal of the Albert Street School in Johannesburg, Dr Faith Mkwananzi, the author, and DR Chris High
From right: William Kandowe, principal of the Albert Street School in Johannesburg, Dr Faith Mkwananzi, the author, and DR Chris High, Senior Lecturer at Linnaeus University in Sweden, at the book launch.

Dr Faith Mkwananzi’s road from secondary school to university has been paved with challenges. After repeating her matric five times in Zimbabwe, she became an international university student in South Africa in 2006. Some years later, on 3 April 2019, the University of the Free State’s (UFS) Bloemfontein Campus witnessed the launch of her excellent book titled: Higher Education, Youth and Migration in Contexts of Disadvantages: Understanding Aspirations and Capabilities, which was informed by these and many circumstances.

Aspirations formation

The book speaks to her own life. “Born and raised in Zimbabwe in KwaBulawayo, I had my own aspirations. I knew I did not want be a nurse   my mother’s earnest interest and desire for me,” said Dr Mkwananzi as she related the fluid dreams her seven-year-old self had that culminated into aspirations to enter academia.

Aspirations enabled Dr Mkwananzi’s capabilities to pursue a PhD in Development Studies at UFS, and then write her book. “Higher education aspirations are worth pursuing,” said the current postdoctoral researcher at the university’s South African Research Chair Initiative (SARChI) in Higher Education and Human Development Research Programme, as she reflected on her academic journey.

Voices of marginalised migrants
 

Dr Mkwananzi has focused her book on the lives, experiences and the formation of higher education aspirations among marginalised migrant youth in Johannesburg. She gives these young people a voice to narrate their own story, making this research an essential work for understanding the conditions necessary for youth to live valuable lives in both local and international contexts. 

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept