Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 April 2019 | Story Valentino Ndaba | Photo Valentino Ndaba
William Kandowe, principal of the Albert Street School in Johannesburg, Dr Faith Mkwananzi, the author, and DR Chris High
From right: William Kandowe, principal of the Albert Street School in Johannesburg, Dr Faith Mkwananzi, the author, and DR Chris High, Senior Lecturer at Linnaeus University in Sweden, at the book launch.

Dr Faith Mkwananzi’s road from secondary school to university has been paved with challenges. After repeating her matric five times in Zimbabwe, she became an international university student in South Africa in 2006. Some years later, on 3 April 2019, the University of the Free State’s (UFS) Bloemfontein Campus witnessed the launch of her excellent book titled: Higher Education, Youth and Migration in Contexts of Disadvantages: Understanding Aspirations and Capabilities, which was informed by these and many circumstances.

Aspirations formation

The book speaks to her own life. “Born and raised in Zimbabwe in KwaBulawayo, I had my own aspirations. I knew I did not want be a nurse   my mother’s earnest interest and desire for me,” said Dr Mkwananzi as she related the fluid dreams her seven-year-old self had that culminated into aspirations to enter academia.

Aspirations enabled Dr Mkwananzi’s capabilities to pursue a PhD in Development Studies at UFS, and then write her book. “Higher education aspirations are worth pursuing,” said the current postdoctoral researcher at the university’s South African Research Chair Initiative (SARChI) in Higher Education and Human Development Research Programme, as she reflected on her academic journey.

Voices of marginalised migrants
 

Dr Mkwananzi has focused her book on the lives, experiences and the formation of higher education aspirations among marginalised migrant youth in Johannesburg. She gives these young people a voice to narrate their own story, making this research an essential work for understanding the conditions necessary for youth to live valuable lives in both local and international contexts. 

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept