Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 April 2019 | Story Valentino Ndaba | Photo Valentino Ndaba
William Kandowe, principal of the Albert Street School in Johannesburg, Dr Faith Mkwananzi, the author, and DR Chris High
From right: William Kandowe, principal of the Albert Street School in Johannesburg, Dr Faith Mkwananzi, the author, and DR Chris High, Senior Lecturer at Linnaeus University in Sweden, at the book launch.

Dr Faith Mkwananzi’s road from secondary school to university has been paved with challenges. After repeating her matric five times in Zimbabwe, she became an international university student in South Africa in 2006. Some years later, on 3 April 2019, the University of the Free State’s (UFS) Bloemfontein Campus witnessed the launch of her excellent book titled: Higher Education, Youth and Migration in Contexts of Disadvantages: Understanding Aspirations and Capabilities, which was informed by these and many circumstances.

Aspirations formation

The book speaks to her own life. “Born and raised in Zimbabwe in KwaBulawayo, I had my own aspirations. I knew I did not want be a nurse   my mother’s earnest interest and desire for me,” said Dr Mkwananzi as she related the fluid dreams her seven-year-old self had that culminated into aspirations to enter academia.

Aspirations enabled Dr Mkwananzi’s capabilities to pursue a PhD in Development Studies at UFS, and then write her book. “Higher education aspirations are worth pursuing,” said the current postdoctoral researcher at the university’s South African Research Chair Initiative (SARChI) in Higher Education and Human Development Research Programme, as she reflected on her academic journey.

Voices of marginalised migrants
 

Dr Mkwananzi has focused her book on the lives, experiences and the formation of higher education aspirations among marginalised migrant youth in Johannesburg. She gives these young people a voice to narrate their own story, making this research an essential work for understanding the conditions necessary for youth to live valuable lives in both local and international contexts. 

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept