Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 April 2019 | Story Leonie Bolleurs | Photo JohanRoux
Prof Chapagain  Inaugural
Prof Ashok Chapagain, Senior Professor in the Department of Agricultural Economics, recently delivered his inaugural lecture on the university’s Bloemfontein Campus. The title of his lecture was Counting Water: Simple yet Complex. From the left are: Dr Engela van Staden, Vice-Rector: Academic; Prof Ashok, Dr Frikkie Maré, Head of the Department of Agricultural Economics; and Prof Danie Vermeulen, Dean of the Faculty of Natural and Agricultural Sciences.

Virtually every economic sector, from agriculture, power generation, manufacturing, beverage, and apparel to tourism, relies on fresh water to sustain its business. Yet, water scarcity and water-pollution levels in river basins around the world are increasing due to growing populations, changing consumption patterns, and poor water governance.

These are the words of Prof Ashok Chapagain, Senior Professor in the Department of Agricultural Economics at the University of the Free State (UFS), who recently delivered his inaugural lecture on the university’s Bloemfontein Campus. The title of his lecture was Counting Water: Simple yet Complex.

He believes that in a world of increasing interconnectedness, equitable and sustainable resource management has become not only a local phenomenon, but also a global one. “The critical factors in managing these resources lie at both ends of the production and consumption chains. The interlinkages between agriculture, trade, economic, and energy policy and water-resources management must be understood,” he said.

Water footprint from farm to cup

The water footprint of a product is the volume of fresh water used to produce the product, measured over the various steps of the production chain. Water use is measured in terms of water volumes consumed or polluted, e.g. a cup of black coffee would take 140 litres of water as a result of water used in various processes, from the farm to the cup! 

Prof Chapagain said: “With the emergence of the water footprint concept, the public could for the first time see that the issue is not only related to direct water use in their houses, but also to their consumption of goods and services, such as food, fibre, and electricity. For example, a developed nation would typically state their water consumption data as around 100-200 litres per capita per day. This information is misleading, as it does not capture the massive amount of water needed to produce food, goods, and services consumed by the nation, which makes the daily water consumption a whopping 3 000-8 000 litres in these developed nations. Consumers, governments, and businesses are beginning to understand how their interests could be sustained in the long run, using this new approach to water-resource management.”

He also spoke about water as an economic enabler. According to him, harnessing the full benefit of water is constrained by three limits: hydrological limits, limits in production efficiency, limits and risks in externalising water footprints. He further elaborated, “Each river basin is unique with respect to amount of rainfall and pattern, rainfall-runoff relation, total available runoff, environmental flow requirements, groundwater recharge, etc. The actual available quantity of water is determined by all these parameters. Hence, there is a hydrological limit to water use in a river basin/aquifers”. He said: “On the other hand, making a process more efficient comes at a price, marking a limit on local efficiency gains. Similarly, importing virtual water to relieve pressure on local water resources would require second-order resources such as foreign currency, and a political will to move from a ‘water and food self-sufficiency’ policy towards a ‘water and food security’ policy. Enhancing the global water-use efficiency by means of trade has socio-economic limitations.” His current research focuses on unravelling these limits to growth, and on developing a generic analytical framework to find optimal solutions to growth under these water limits.

Trade can relieve the strain

Regarding the latter, he said trade in water-intensive goods and services could help relieve the strain on local/national water resources. For example, Switzerland covers merely 18% of its water demand from its internal water resources, i.e. 82% of it is external! South Africa’s external water footprint is only 22% of the total water footprint of national consumption. Hence, the scope of international trade to help alleviate local scarcity is limited by the availability of second-order resources such as foreign exchange, institutional capacity, socio-political context, etc. 

However, globalisation of fresh water brings both risks and opportunities. “Although national water resources could be saved for best alternative uses, the risks of a growing external dependency and the associated risks related to events elsewhere, are often not visible. These water-intensive production processes are vulnerable to the availability of water at the various locations where the production processes take place. The vulnerabilities may result from a range of factors – from reduced river flows, lowered lake levels, and declined ground-water tables to increased salt intrusion in coastal areas, pollution of freshwater bodies, droughts, and a changing climate,” he said.

Water footprint assessment

Prof Chapagain also touched on the Water Footprint Assessment; he believes it has provided a sound method to analyse the water footprint in the relevant context and formulate appropriate response strategies. “The water-footprint assessment breaks down the different water-footprint components and checks the sustainability of these components against three sets of criteria: environmental, economic, and social. The application of the Water Footprint Assessment has evolved from basic quantitative studies to a powerful advocacy tool that can support decision-making and policy processes and help mitigate water-related business risk.

“Counting water drops is simple, yet unravelling the underlying complexities is the key! I count on you to start by counting water drops in counting for sustainable growth,” he concluded.

News Archive

Two UFS architecture students won prestigious PG Bison 1.618 Competition
2017-10-26

 Description: Bison read more Tags: : Stephan Diedericks, Department of Architecture, Margaux Loubser, Kobus du Preez, Zack Wessels, PG Bison 1.168 Competition 

At the PG Bison 1.618 competition awards ceremony
in Rosebank, were from the left:
Camrin Plaatjes from the University of KwaZulu-Natal;
Stephan Diedericks, winner of the competition;
and Margaux Loubser,
the second-place winner. Both Stephan and
Margaux are studying Architecture at the UFS.
Photo: Supplied



Food that reaches its sell-by date in supermarkets is usually disposed of, but has not yet reached its best-before date.  What happens to this food?  According to Stephan Diedericks, the answer to this is for this food to be repurposed.

Not only does Stephan want to prevent the waste of food – in a world where food security is a challenge – but he also won the prestigious PG Bison 1.618 Competition with his entry in which he suggests that gourmet meals be prepared from food that has reached its sell-by date, and then be served in the Delta Recycletorium. 

Students introduced to park lands in urban areas
Diedericks is a student in the Department of Architecture at the University of the Free State (UFS). Second-place winner in this competition was Margaux Loubser, also a UFS student. Another UFS student, Dehan Kassimatis, was a finalist. They received their awards at a ceremony in Rosebank, Johannesburg, earlier this month. 

The competition, now in its 24th year, was created to recognise the future interior and industrial designers, architects, and key decision-makers in the South African construction industry. It is known not only for the prestige it offers its winners, but also for the tradition-defying brief given to the students each year.

According to lecturers Kobus du Preez and Zak Wessels, in the Department of Architecture, the competition introduced the students to parklands in urban areas. He quotes the competition brief: “Rural to urban migration with the development of commercial and residential property elevates the importance of parklands within cities, in creating a refuge from the hustle of daily life.  These areas are leveraged to encourage healthier living, community interaction and environmental awareness.”

Learning experience more important than prizes
The site that was the focus of the competition is the Environmental Centre, Delta Park Heritage Precinct in Johannesburg. Students needed to transform this old building into a vibrant gastronomic restaurant. “The theme and style of the restaurant was for the student to choose,” said Du Preez. 

Loubser called her restaurant Rooted – a wholefood restaurant.  She was influenced by the geometries of the original Art Deco building. Rooted articulates and integrates the space between nature and the building.  Similar to an Art Deco painting or poster, the landscape is abstracted into terraces which are used to grow vegetables organically.  Vertical green screens soften the divide between the building and its surroundings and it provides shade.

“Our students took their clues from the existing environment and integrated it with a single idea, an abstract concept, which impressed the judges,” Du Preez said. 

Although this is a competition that is well reported in the industry press, Du Preez and Wessels agree that the learning experience for students is much more important than winning the contest. The competition’s brief aligned well with the Department of Architecture’s learning content with its urban focus.

Jacques Steyn, a UFS architecture student, came third in the competition in 2015.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept