Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 April 2019 | Story Leonie Bolleurs | Photo JohanRoux
Prof Chapagain  Inaugural
Prof Ashok Chapagain, Senior Professor in the Department of Agricultural Economics, recently delivered his inaugural lecture on the university’s Bloemfontein Campus. The title of his lecture was Counting Water: Simple yet Complex. From the left are: Dr Engela van Staden, Vice-Rector: Academic; Prof Ashok, Dr Frikkie Maré, Head of the Department of Agricultural Economics; and Prof Danie Vermeulen, Dean of the Faculty of Natural and Agricultural Sciences.

Virtually every economic sector, from agriculture, power generation, manufacturing, beverage, and apparel to tourism, relies on fresh water to sustain its business. Yet, water scarcity and water-pollution levels in river basins around the world are increasing due to growing populations, changing consumption patterns, and poor water governance.

These are the words of Prof Ashok Chapagain, Senior Professor in the Department of Agricultural Economics at the University of the Free State (UFS), who recently delivered his inaugural lecture on the university’s Bloemfontein Campus. The title of his lecture was Counting Water: Simple yet Complex.

He believes that in a world of increasing interconnectedness, equitable and sustainable resource management has become not only a local phenomenon, but also a global one. “The critical factors in managing these resources lie at both ends of the production and consumption chains. The interlinkages between agriculture, trade, economic, and energy policy and water-resources management must be understood,” he said.

Water footprint from farm to cup

The water footprint of a product is the volume of fresh water used to produce the product, measured over the various steps of the production chain. Water use is measured in terms of water volumes consumed or polluted, e.g. a cup of black coffee would take 140 litres of water as a result of water used in various processes, from the farm to the cup! 

Prof Chapagain said: “With the emergence of the water footprint concept, the public could for the first time see that the issue is not only related to direct water use in their houses, but also to their consumption of goods and services, such as food, fibre, and electricity. For example, a developed nation would typically state their water consumption data as around 100-200 litres per capita per day. This information is misleading, as it does not capture the massive amount of water needed to produce food, goods, and services consumed by the nation, which makes the daily water consumption a whopping 3 000-8 000 litres in these developed nations. Consumers, governments, and businesses are beginning to understand how their interests could be sustained in the long run, using this new approach to water-resource management.”

He also spoke about water as an economic enabler. According to him, harnessing the full benefit of water is constrained by three limits: hydrological limits, limits in production efficiency, limits and risks in externalising water footprints. He further elaborated, “Each river basin is unique with respect to amount of rainfall and pattern, rainfall-runoff relation, total available runoff, environmental flow requirements, groundwater recharge, etc. The actual available quantity of water is determined by all these parameters. Hence, there is a hydrological limit to water use in a river basin/aquifers”. He said: “On the other hand, making a process more efficient comes at a price, marking a limit on local efficiency gains. Similarly, importing virtual water to relieve pressure on local water resources would require second-order resources such as foreign currency, and a political will to move from a ‘water and food self-sufficiency’ policy towards a ‘water and food security’ policy. Enhancing the global water-use efficiency by means of trade has socio-economic limitations.” His current research focuses on unravelling these limits to growth, and on developing a generic analytical framework to find optimal solutions to growth under these water limits.

Trade can relieve the strain

Regarding the latter, he said trade in water-intensive goods and services could help relieve the strain on local/national water resources. For example, Switzerland covers merely 18% of its water demand from its internal water resources, i.e. 82% of it is external! South Africa’s external water footprint is only 22% of the total water footprint of national consumption. Hence, the scope of international trade to help alleviate local scarcity is limited by the availability of second-order resources such as foreign exchange, institutional capacity, socio-political context, etc. 

However, globalisation of fresh water brings both risks and opportunities. “Although national water resources could be saved for best alternative uses, the risks of a growing external dependency and the associated risks related to events elsewhere, are often not visible. These water-intensive production processes are vulnerable to the availability of water at the various locations where the production processes take place. The vulnerabilities may result from a range of factors – from reduced river flows, lowered lake levels, and declined ground-water tables to increased salt intrusion in coastal areas, pollution of freshwater bodies, droughts, and a changing climate,” he said.

Water footprint assessment

Prof Chapagain also touched on the Water Footprint Assessment; he believes it has provided a sound method to analyse the water footprint in the relevant context and formulate appropriate response strategies. “The water-footprint assessment breaks down the different water-footprint components and checks the sustainability of these components against three sets of criteria: environmental, economic, and social. The application of the Water Footprint Assessment has evolved from basic quantitative studies to a powerful advocacy tool that can support decision-making and policy processes and help mitigate water-related business risk.

“Counting water drops is simple, yet unravelling the underlying complexities is the key! I count on you to start by counting water drops in counting for sustainable growth,” he concluded.

News Archive

UFS council elects Nwaila and Hancke
2005-03-15

Dr Charles Nwaila, Superintendent-General of Education in the Free State, was elected Vice-chairperson of the UFS Council and Judge Faan Hancke was re-elected as Chairperson today.

According to the Rector and Vice-Chancellor, Prof Frederick Fourie, the election of Dr Nwaila is an important achievement for the UFS as Dr Nwaila is a well known leader in education in the Free State.

Dr Nwaila pledged to work constructively with the UFS council and management to ensure that the UFS benefits all people of the province and the country.

The appointments are valid for a term of three years from 1 June 2005 to 31 May 2008.

The elections took place at the quarterly meeting of the UFS Council where a number of other key transformation steps were approved.

The Council approved a Strategic Plan for the UFS which reflects a renewed focus on transformation of the institution, calling it an important roadmap for the future of the UFS.

According to Prof Fourie, the Strategic Plan tried strike a balance between continuity and change, addressing the need to remain an excellent university in an ever-changing context and environment.

Prof Fourie said transformation had many aspects and dimensions and could not be reduced to an issue of numbers.

The Strategic Plan identifies five strategic priorities and corresponding challenges in the next phase of transformation.

The priorities are:

  • quality and excellence

  • equity, diversity and redress

  • financial sustainability

  • regional co-operation and engagement.

  • outward thrust

Prof Fourie said that besides the five strategic priorities the plan also reflected concrete actions and interventions to address them.

He said the renewed focus on transformation is embedded in the priorities and specific actions that are identified.

The Council congratulated the management for the roadmap and for the achievements that have already been achieved in terms of transformation.

In order to draft a comprehensive Transformation Plan that will give substance to certain aspects of the UFS Strategic plan – or roadmap – the Council approved the establishment of a Transformation Plan Team.

The team will consist of about 16 people, which includes the two coordinators, Prof Teuns Verschoor, Vice-Rector: Academic Operations, and Dr Ezekiel Moraka, Vice-Rector: Student Affairs.

According to Prof Verschoor, the team was chosen and approved by the Executive Management earlier for the individual contributions that they could make.

While the individuals do not represent particular constituencies on campus they are a very diverse group of persons in terms of race, gender and various sections of the campus and the satellite campuses.

Prof Fourie, said there was an urgency and importance attached to the work of the Transformation Plan Team.

He said that while the team must produce a plan within a tight deadline, the task must be carried out very well, which could mean different stages in the work of the team.

According to the Rector, the UFS must take the lead in best practice transformation, while not underestimating the complexity of the issues facing the UFS.

The full list of names will be finalized soon.

MEDIA RELEASE
Issued by: Mnr Anton Fisher
Director: Strategic Communication
Cel: 072 207 8334
Tel: (051) 401-2749
11 Maart 2005

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept