Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 April 2019 | Story Leonie Bolleurs | Photo JohanRoux
Prof Chapagain  Inaugural
Prof Ashok Chapagain, Senior Professor in the Department of Agricultural Economics, recently delivered his inaugural lecture on the university’s Bloemfontein Campus. The title of his lecture was Counting Water: Simple yet Complex. From the left are: Dr Engela van Staden, Vice-Rector: Academic; Prof Ashok, Dr Frikkie Maré, Head of the Department of Agricultural Economics; and Prof Danie Vermeulen, Dean of the Faculty of Natural and Agricultural Sciences.

Virtually every economic sector, from agriculture, power generation, manufacturing, beverage, and apparel to tourism, relies on fresh water to sustain its business. Yet, water scarcity and water-pollution levels in river basins around the world are increasing due to growing populations, changing consumption patterns, and poor water governance.

These are the words of Prof Ashok Chapagain, Senior Professor in the Department of Agricultural Economics at the University of the Free State (UFS), who recently delivered his inaugural lecture on the university’s Bloemfontein Campus. The title of his lecture was Counting Water: Simple yet Complex.

He believes that in a world of increasing interconnectedness, equitable and sustainable resource management has become not only a local phenomenon, but also a global one. “The critical factors in managing these resources lie at both ends of the production and consumption chains. The interlinkages between agriculture, trade, economic, and energy policy and water-resources management must be understood,” he said.

Water footprint from farm to cup

The water footprint of a product is the volume of fresh water used to produce the product, measured over the various steps of the production chain. Water use is measured in terms of water volumes consumed or polluted, e.g. a cup of black coffee would take 140 litres of water as a result of water used in various processes, from the farm to the cup! 

Prof Chapagain said: “With the emergence of the water footprint concept, the public could for the first time see that the issue is not only related to direct water use in their houses, but also to their consumption of goods and services, such as food, fibre, and electricity. For example, a developed nation would typically state their water consumption data as around 100-200 litres per capita per day. This information is misleading, as it does not capture the massive amount of water needed to produce food, goods, and services consumed by the nation, which makes the daily water consumption a whopping 3 000-8 000 litres in these developed nations. Consumers, governments, and businesses are beginning to understand how their interests could be sustained in the long run, using this new approach to water-resource management.”

He also spoke about water as an economic enabler. According to him, harnessing the full benefit of water is constrained by three limits: hydrological limits, limits in production efficiency, limits and risks in externalising water footprints. He further elaborated, “Each river basin is unique with respect to amount of rainfall and pattern, rainfall-runoff relation, total available runoff, environmental flow requirements, groundwater recharge, etc. The actual available quantity of water is determined by all these parameters. Hence, there is a hydrological limit to water use in a river basin/aquifers”. He said: “On the other hand, making a process more efficient comes at a price, marking a limit on local efficiency gains. Similarly, importing virtual water to relieve pressure on local water resources would require second-order resources such as foreign currency, and a political will to move from a ‘water and food self-sufficiency’ policy towards a ‘water and food security’ policy. Enhancing the global water-use efficiency by means of trade has socio-economic limitations.” His current research focuses on unravelling these limits to growth, and on developing a generic analytical framework to find optimal solutions to growth under these water limits.

Trade can relieve the strain

Regarding the latter, he said trade in water-intensive goods and services could help relieve the strain on local/national water resources. For example, Switzerland covers merely 18% of its water demand from its internal water resources, i.e. 82% of it is external! South Africa’s external water footprint is only 22% of the total water footprint of national consumption. Hence, the scope of international trade to help alleviate local scarcity is limited by the availability of second-order resources such as foreign exchange, institutional capacity, socio-political context, etc. 

However, globalisation of fresh water brings both risks and opportunities. “Although national water resources could be saved for best alternative uses, the risks of a growing external dependency and the associated risks related to events elsewhere, are often not visible. These water-intensive production processes are vulnerable to the availability of water at the various locations where the production processes take place. The vulnerabilities may result from a range of factors – from reduced river flows, lowered lake levels, and declined ground-water tables to increased salt intrusion in coastal areas, pollution of freshwater bodies, droughts, and a changing climate,” he said.

Water footprint assessment

Prof Chapagain also touched on the Water Footprint Assessment; he believes it has provided a sound method to analyse the water footprint in the relevant context and formulate appropriate response strategies. “The water-footprint assessment breaks down the different water-footprint components and checks the sustainability of these components against three sets of criteria: environmental, economic, and social. The application of the Water Footprint Assessment has evolved from basic quantitative studies to a powerful advocacy tool that can support decision-making and policy processes and help mitigate water-related business risk.

“Counting water drops is simple, yet unravelling the underlying complexities is the key! I count on you to start by counting water drops in counting for sustainable growth,” he concluded.

News Archive

UFS Chemistry wins dti award
2010-11-02

At the awards ceremony are, from the left: Director-General of Trade and Industry Mr Tshediso Matona, Prof. Andreas Roodt and the Deputy-Minister of Trade and Industry, Ms Bongi Maria Ntuli.
Photo: S Osman

The research group of Prof. Andreas Roodt, Head of the Department of Chemistry at the University of the Free State (UFS) in Bloemfontein, won the first prize in the category Development of Small Medium and Micro-Enterprises (SMME) at the annual Department of Trade and Industry’s (dti) award ceremony.

Prof. Roodt received the prize for the high-technology project Development of novel nuclear pharmaceuticals in the Technology and Human Resources for Industry Programme (THRIP).

The Deputy-Minister of Trade and Industry Bongi Maria Ntuli, and Director-General Tshediso Matona presented the prize at the gala dinner held at Gallagher Estate, Gauteng in October 2010.

The dti’s Annual Technology Awards recognise excellence in research and aim to raise awareness on the benefits of using technology to improve the competitiveness of enterprises, within the local and global arena. Individuals and organisations are recognised for their efforts in advancing and promoting technology interests and emerging enterprises.

The technology awards cover the achievements of three of the dti technology programmes collectively, namely THRIP, managed by the National Research Foundation (NRF); the Support Programme for Industrial Innovation (SPII) managed by the Industrial Development Corporation (IDC); and the Small Enterprise Development Agency (seda) Technology Programme (stp).

Prof. Roodt, also vice-president of the European Crystallographic Association, who has just returned from a series of lectures abroad after being elected Fellow of the Royal Society of Chemistry in the UK, has received funding in excess of R3 million over the past two years to set up a specialised laboratory for synthesising active compounds. Key partners in this project are Dr Gerdus Kemp from PETLabs Pharmaceuticals in Pretoria; Prof. Connie Medlen (pharmacologist), recently appointed affiliate professor at UFS Chemistry; as well as Prof. Deon Visser from the Inorganic Chemistry research group at the UFS.

The research aims to produce new nuclear medicinal agents for the early diagnosis of cancer, heart and brain defects, and even HIV/ Aids.

Two doctoral students, Alice Brink and Marietjie Schutte, are currently actively involved in this project. They are the recipients of prestige scholarships introduced by the UFS Rector and Vice-Chancellor, Prof. Jonathan Jansen, under the UFS Research Initiative (the Advanced Biomolecular Systems Cluster) to complete their Ph.D. studies.

Media Release
Issued by: Lacea Loader
Director: Strategic Communication (actg)
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl@ufs.ac.za  
2 November 2010

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept