Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 April 2019 | Story Leonie Bolleurs | Photo JohanRoux
Prof Chapagain  Inaugural
Prof Ashok Chapagain, Senior Professor in the Department of Agricultural Economics, recently delivered his inaugural lecture on the university’s Bloemfontein Campus. The title of his lecture was Counting Water: Simple yet Complex. From the left are: Dr Engela van Staden, Vice-Rector: Academic; Prof Ashok, Dr Frikkie Maré, Head of the Department of Agricultural Economics; and Prof Danie Vermeulen, Dean of the Faculty of Natural and Agricultural Sciences.

Virtually every economic sector, from agriculture, power generation, manufacturing, beverage, and apparel to tourism, relies on fresh water to sustain its business. Yet, water scarcity and water-pollution levels in river basins around the world are increasing due to growing populations, changing consumption patterns, and poor water governance.

These are the words of Prof Ashok Chapagain, Senior Professor in the Department of Agricultural Economics at the University of the Free State (UFS), who recently delivered his inaugural lecture on the university’s Bloemfontein Campus. The title of his lecture was Counting Water: Simple yet Complex.

He believes that in a world of increasing interconnectedness, equitable and sustainable resource management has become not only a local phenomenon, but also a global one. “The critical factors in managing these resources lie at both ends of the production and consumption chains. The interlinkages between agriculture, trade, economic, and energy policy and water-resources management must be understood,” he said.

Water footprint from farm to cup

The water footprint of a product is the volume of fresh water used to produce the product, measured over the various steps of the production chain. Water use is measured in terms of water volumes consumed or polluted, e.g. a cup of black coffee would take 140 litres of water as a result of water used in various processes, from the farm to the cup! 

Prof Chapagain said: “With the emergence of the water footprint concept, the public could for the first time see that the issue is not only related to direct water use in their houses, but also to their consumption of goods and services, such as food, fibre, and electricity. For example, a developed nation would typically state their water consumption data as around 100-200 litres per capita per day. This information is misleading, as it does not capture the massive amount of water needed to produce food, goods, and services consumed by the nation, which makes the daily water consumption a whopping 3 000-8 000 litres in these developed nations. Consumers, governments, and businesses are beginning to understand how their interests could be sustained in the long run, using this new approach to water-resource management.”

He also spoke about water as an economic enabler. According to him, harnessing the full benefit of water is constrained by three limits: hydrological limits, limits in production efficiency, limits and risks in externalising water footprints. He further elaborated, “Each river basin is unique with respect to amount of rainfall and pattern, rainfall-runoff relation, total available runoff, environmental flow requirements, groundwater recharge, etc. The actual available quantity of water is determined by all these parameters. Hence, there is a hydrological limit to water use in a river basin/aquifers”. He said: “On the other hand, making a process more efficient comes at a price, marking a limit on local efficiency gains. Similarly, importing virtual water to relieve pressure on local water resources would require second-order resources such as foreign currency, and a political will to move from a ‘water and food self-sufficiency’ policy towards a ‘water and food security’ policy. Enhancing the global water-use efficiency by means of trade has socio-economic limitations.” His current research focuses on unravelling these limits to growth, and on developing a generic analytical framework to find optimal solutions to growth under these water limits.

Trade can relieve the strain

Regarding the latter, he said trade in water-intensive goods and services could help relieve the strain on local/national water resources. For example, Switzerland covers merely 18% of its water demand from its internal water resources, i.e. 82% of it is external! South Africa’s external water footprint is only 22% of the total water footprint of national consumption. Hence, the scope of international trade to help alleviate local scarcity is limited by the availability of second-order resources such as foreign exchange, institutional capacity, socio-political context, etc. 

However, globalisation of fresh water brings both risks and opportunities. “Although national water resources could be saved for best alternative uses, the risks of a growing external dependency and the associated risks related to events elsewhere, are often not visible. These water-intensive production processes are vulnerable to the availability of water at the various locations where the production processes take place. The vulnerabilities may result from a range of factors – from reduced river flows, lowered lake levels, and declined ground-water tables to increased salt intrusion in coastal areas, pollution of freshwater bodies, droughts, and a changing climate,” he said.

Water footprint assessment

Prof Chapagain also touched on the Water Footprint Assessment; he believes it has provided a sound method to analyse the water footprint in the relevant context and formulate appropriate response strategies. “The water-footprint assessment breaks down the different water-footprint components and checks the sustainability of these components against three sets of criteria: environmental, economic, and social. The application of the Water Footprint Assessment has evolved from basic quantitative studies to a powerful advocacy tool that can support decision-making and policy processes and help mitigate water-related business risk.

“Counting water drops is simple, yet unravelling the underlying complexities is the key! I count on you to start by counting water drops in counting for sustainable growth,” he concluded.

News Archive

Dialogue between Science and Society series looks at forgiveness and reconciliation
2013-03-24

 

Taking part in the discussion on forgiveness and living reconciliation, were from left: Olga Macingwane, a survivor of the Worcester bombing of 1993; Dr Juliet Rogers, a Scholar on Remorse from the University of Melbourne in Australia and Dr Deon Snyman, Chairperson of the Worcester Hope and Reconciliation Process.
Photo: Mandi Bezuidenhout
24 March 2013

How do you, as a mother who lost her only daughter, forgive the man who claimed responsibility for the attack that killed her?  How do you forget his crime while travelling with him across the world?  

These were some of the questions posed to Jeanette Fourie at a Dialogue between Science and Society series on forgiveness and living reconciliation. Jeanette, whose daughter Lyndi was killed in an attack on the Heidelberg Pub in Cape Town in 1993, was one of three people telling their stories of forgiveness while dealing with traumatic experiences. 

Sitting next to Letlapa Mphahlele, the man who owned up to the attack that killed her daughter, Jeanette spoke about their story of forgiveness traveling the world together, spreading the message of forgiveness and conciliation. 

"Don't ever think you can forget, because that’s not possible. What you do with the pain is to find peace, and that's what forgiveness does. Forgiveness allows you to stop all the dialogue in your head on why he did it. You don't forget, you confront it and you deal with it." 

Letlapa, Director of Operations of Apla, the military wing of the PAC at the time of Lyndi's death, spoke about dealing with the response to his crime. "Sometimes you wish that you were not forgiven, because now you have the great burden of proving that you are worthy of forgiveness."

Also telling her story of forgiveness was Olga Macingwane, a survivor of the Worcester bombing of 1993 in which four people were killed and sixty-seven others injured. Four people were sent to prison. In 2009 Olga met one of the perpetrators, Stefaans Coetzee, and what came out of that meeting, is her story. 

"When I met Stefaans I was very angry, but when you sit down with somebody and listen to him or her, you find out what the reasons were that made him or her do something. I can say that I forgave him." 

Facilitating the conversation, Prof Pumla Gobodo-Madikizela, Senior Research Professor on Trauma, Forgiveness and Reconciliation, said the seminar was meant to get in touch with the truth that forgiveness is possible. 

"Before we had the Truth and Reconciliation Commission (TRC) in South Africa, the experts always said that forgiveness was not possible in these stories of the past. And then the TRC came into life as a response to mass atrocities. For the first time in the history of these traumatic experiences, of political traumas, we witness something that we have never seen.  Even us on the TRC, although it was framed as reconciliation, we never imagined there would actually be stories of forgiveness emerging out of that process, and then we witness that this too is possible." 

Others who took part in the two-hour-long seminar, were Dr Juliet Rogers, a Scholar on Remorse from the University of Melbourne in Australia and Dr Deon Snyman, Chairperson of the Worcester Hope and Reconciliation Process. They spoke about the dynamics behind the processes of engagement between victims/ survivors and perpetrators. 

The Dialogue between Science and Society series was co-hosted by the Institute for Reconciliation and Social Justice. 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept