Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 April 2019 | Story Leonie Bolleurs | Photo JohanRoux
Prof Chapagain  Inaugural
Prof Ashok Chapagain, Senior Professor in the Department of Agricultural Economics, recently delivered his inaugural lecture on the university’s Bloemfontein Campus. The title of his lecture was Counting Water: Simple yet Complex. From the left are: Dr Engela van Staden, Vice-Rector: Academic; Prof Ashok, Dr Frikkie Maré, Head of the Department of Agricultural Economics; and Prof Danie Vermeulen, Dean of the Faculty of Natural and Agricultural Sciences.

Virtually every economic sector, from agriculture, power generation, manufacturing, beverage, and apparel to tourism, relies on fresh water to sustain its business. Yet, water scarcity and water-pollution levels in river basins around the world are increasing due to growing populations, changing consumption patterns, and poor water governance.

These are the words of Prof Ashok Chapagain, Senior Professor in the Department of Agricultural Economics at the University of the Free State (UFS), who recently delivered his inaugural lecture on the university’s Bloemfontein Campus. The title of his lecture was Counting Water: Simple yet Complex.

He believes that in a world of increasing interconnectedness, equitable and sustainable resource management has become not only a local phenomenon, but also a global one. “The critical factors in managing these resources lie at both ends of the production and consumption chains. The interlinkages between agriculture, trade, economic, and energy policy and water-resources management must be understood,” he said.

Water footprint from farm to cup

The water footprint of a product is the volume of fresh water used to produce the product, measured over the various steps of the production chain. Water use is measured in terms of water volumes consumed or polluted, e.g. a cup of black coffee would take 140 litres of water as a result of water used in various processes, from the farm to the cup! 

Prof Chapagain said: “With the emergence of the water footprint concept, the public could for the first time see that the issue is not only related to direct water use in their houses, but also to their consumption of goods and services, such as food, fibre, and electricity. For example, a developed nation would typically state their water consumption data as around 100-200 litres per capita per day. This information is misleading, as it does not capture the massive amount of water needed to produce food, goods, and services consumed by the nation, which makes the daily water consumption a whopping 3 000-8 000 litres in these developed nations. Consumers, governments, and businesses are beginning to understand how their interests could be sustained in the long run, using this new approach to water-resource management.”

He also spoke about water as an economic enabler. According to him, harnessing the full benefit of water is constrained by three limits: hydrological limits, limits in production efficiency, limits and risks in externalising water footprints. He further elaborated, “Each river basin is unique with respect to amount of rainfall and pattern, rainfall-runoff relation, total available runoff, environmental flow requirements, groundwater recharge, etc. The actual available quantity of water is determined by all these parameters. Hence, there is a hydrological limit to water use in a river basin/aquifers”. He said: “On the other hand, making a process more efficient comes at a price, marking a limit on local efficiency gains. Similarly, importing virtual water to relieve pressure on local water resources would require second-order resources such as foreign currency, and a political will to move from a ‘water and food self-sufficiency’ policy towards a ‘water and food security’ policy. Enhancing the global water-use efficiency by means of trade has socio-economic limitations.” His current research focuses on unravelling these limits to growth, and on developing a generic analytical framework to find optimal solutions to growth under these water limits.

Trade can relieve the strain

Regarding the latter, he said trade in water-intensive goods and services could help relieve the strain on local/national water resources. For example, Switzerland covers merely 18% of its water demand from its internal water resources, i.e. 82% of it is external! South Africa’s external water footprint is only 22% of the total water footprint of national consumption. Hence, the scope of international trade to help alleviate local scarcity is limited by the availability of second-order resources such as foreign exchange, institutional capacity, socio-political context, etc. 

However, globalisation of fresh water brings both risks and opportunities. “Although national water resources could be saved for best alternative uses, the risks of a growing external dependency and the associated risks related to events elsewhere, are often not visible. These water-intensive production processes are vulnerable to the availability of water at the various locations where the production processes take place. The vulnerabilities may result from a range of factors – from reduced river flows, lowered lake levels, and declined ground-water tables to increased salt intrusion in coastal areas, pollution of freshwater bodies, droughts, and a changing climate,” he said.

Water footprint assessment

Prof Chapagain also touched on the Water Footprint Assessment; he believes it has provided a sound method to analyse the water footprint in the relevant context and formulate appropriate response strategies. “The water-footprint assessment breaks down the different water-footprint components and checks the sustainability of these components against three sets of criteria: environmental, economic, and social. The application of the Water Footprint Assessment has evolved from basic quantitative studies to a powerful advocacy tool that can support decision-making and policy processes and help mitigate water-related business risk.

“Counting water drops is simple, yet unravelling the underlying complexities is the key! I count on you to start by counting water drops in counting for sustainable growth,” he concluded.

News Archive

Multi-disciplinary research approach at UFS
2005-10-25

UFS follows multi-disciplinary research approach with opening of new centre 

“A new way of doing business in necessary in the research and teaching of agriculture and natural sciences in South Africa.  We must move away from  departmentalised research infrastructures and a multi-disciplinary approach to research involving several disciplines must be adapted,” said Prof Herman van Schalkwyk, Dean:  Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS).   

Prof van Schalkwyk delivered the keynote address during the launch of the Centre for Plant Health Management (CePHMa) at the Main Campus in Bloemfontein today (21 October 2005).  CePHMa is an initiative of the UFS Department of Plant Sciences.

According to Prof van Schalkwyk a tertiary institution must practice multi-disciplinary research to be a world-class research institution.  “It is difficult for researchers to admit that they do not know a lot about each other’s area of speciality.  It is therefore necessary for researchers to make a paradigm shift and to focus on inter-disciplinary co-operation.  To do this, we must encourage them to work together and to find a common language to communicate ideas en establish symbiotic relationships,” said Prof Van Schalkwyk.

“We tend to think that research is better and faster if it is specialised.  This is not true.  The new generation of scientists are young and they are trained to form a concept of the total system and not to focus on a specific area of speciality.  At the UFS we encourage this approach to research.  This was one of the main reasons for the establishment of CePHMa,” said Prof Van Schalkwyk.
CePHMa is the only centre of its kind in Africa and is established to extend the expertise in plant health management in South Africa and in Africa, to train experts in plant health and to conduct multi-disciplinary research about the health of agricultural crops.  

“CePHMa is a virtual centre comprising of ten disciplines applicable to crop production and crop protection,” said Prof Wijnand Swart, Chairperson of CePHMa during the opening ceremony.

“The UFS is the leading institution in Africa in terms of news crop development and manages three research programmes that concentrate on new crops, i.e. the New Crop Pathology Programme, the New Crop Development Programme and the Insects on New Crops Programme.  Other applied research programmes that are unique to the UFS are genetic resistance to rust diseases of small grain crops and sustainable integrated disease management of field crops,” said Prof Swart.

“Because the expected growth in population will be 80% in 2020 in sub-Saharan Africa, the future demands of food produce in Africa will be influenced.  Therefore research will in future be focused on ways to improve food security by employing  agricultural systems that are economically viable and environmentally sound,” said Prof Swart.

“Thorough knowledge of the concept of holistic plant health management is crucial to meet the challenge and it is therefore imperative that innovative crop protection and crop production strategies, with particular emphasis on plant health, be adopted.  This is why the Department of Plant Sciences initiated the establishment of CePHMA,” he said.

According to Prof Swart there is a shortage of expertise in plant health management.  “The UFS has shown the potential to address the demand of the sub-continent of Africa regarding expertise training and CePHMa is the leader in southern Africa to provide in this need,” he said.

The appropriateness and quality of training in plant health management is reflected in the fact that students from Ethiopia, Eritrea, Malawi, Uganda, Zambia, Ghana, Tanzania, Cameroon, Angola, Mozambique and Lesotho have already been trained or are in the process of being trained in at the UFS.

Scientists from CePHMa have forged partnerships with numerous national and international institutions including the Agricultural Research Council (ARC), various community trusts, seed, pesticide and agricultural chemical companies, in addition to overseas universities. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
21 October 2005

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept