Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 April 2019 | Story Leonie Bolleurs | Photo JohanRoux
Prof Chapagain  Inaugural
Prof Ashok Chapagain, Senior Professor in the Department of Agricultural Economics, recently delivered his inaugural lecture on the university’s Bloemfontein Campus. The title of his lecture was Counting Water: Simple yet Complex. From the left are: Dr Engela van Staden, Vice-Rector: Academic; Prof Ashok, Dr Frikkie Maré, Head of the Department of Agricultural Economics; and Prof Danie Vermeulen, Dean of the Faculty of Natural and Agricultural Sciences.

Virtually every economic sector, from agriculture, power generation, manufacturing, beverage, and apparel to tourism, relies on fresh water to sustain its business. Yet, water scarcity and water-pollution levels in river basins around the world are increasing due to growing populations, changing consumption patterns, and poor water governance.

These are the words of Prof Ashok Chapagain, Senior Professor in the Department of Agricultural Economics at the University of the Free State (UFS), who recently delivered his inaugural lecture on the university’s Bloemfontein Campus. The title of his lecture was Counting Water: Simple yet Complex.

He believes that in a world of increasing interconnectedness, equitable and sustainable resource management has become not only a local phenomenon, but also a global one. “The critical factors in managing these resources lie at both ends of the production and consumption chains. The interlinkages between agriculture, trade, economic, and energy policy and water-resources management must be understood,” he said.

Water footprint from farm to cup

The water footprint of a product is the volume of fresh water used to produce the product, measured over the various steps of the production chain. Water use is measured in terms of water volumes consumed or polluted, e.g. a cup of black coffee would take 140 litres of water as a result of water used in various processes, from the farm to the cup! 

Prof Chapagain said: “With the emergence of the water footprint concept, the public could for the first time see that the issue is not only related to direct water use in their houses, but also to their consumption of goods and services, such as food, fibre, and electricity. For example, a developed nation would typically state their water consumption data as around 100-200 litres per capita per day. This information is misleading, as it does not capture the massive amount of water needed to produce food, goods, and services consumed by the nation, which makes the daily water consumption a whopping 3 000-8 000 litres in these developed nations. Consumers, governments, and businesses are beginning to understand how their interests could be sustained in the long run, using this new approach to water-resource management.”

He also spoke about water as an economic enabler. According to him, harnessing the full benefit of water is constrained by three limits: hydrological limits, limits in production efficiency, limits and risks in externalising water footprints. He further elaborated, “Each river basin is unique with respect to amount of rainfall and pattern, rainfall-runoff relation, total available runoff, environmental flow requirements, groundwater recharge, etc. The actual available quantity of water is determined by all these parameters. Hence, there is a hydrological limit to water use in a river basin/aquifers”. He said: “On the other hand, making a process more efficient comes at a price, marking a limit on local efficiency gains. Similarly, importing virtual water to relieve pressure on local water resources would require second-order resources such as foreign currency, and a political will to move from a ‘water and food self-sufficiency’ policy towards a ‘water and food security’ policy. Enhancing the global water-use efficiency by means of trade has socio-economic limitations.” His current research focuses on unravelling these limits to growth, and on developing a generic analytical framework to find optimal solutions to growth under these water limits.

Trade can relieve the strain

Regarding the latter, he said trade in water-intensive goods and services could help relieve the strain on local/national water resources. For example, Switzerland covers merely 18% of its water demand from its internal water resources, i.e. 82% of it is external! South Africa’s external water footprint is only 22% of the total water footprint of national consumption. Hence, the scope of international trade to help alleviate local scarcity is limited by the availability of second-order resources such as foreign exchange, institutional capacity, socio-political context, etc. 

However, globalisation of fresh water brings both risks and opportunities. “Although national water resources could be saved for best alternative uses, the risks of a growing external dependency and the associated risks related to events elsewhere, are often not visible. These water-intensive production processes are vulnerable to the availability of water at the various locations where the production processes take place. The vulnerabilities may result from a range of factors – from reduced river flows, lowered lake levels, and declined ground-water tables to increased salt intrusion in coastal areas, pollution of freshwater bodies, droughts, and a changing climate,” he said.

Water footprint assessment

Prof Chapagain also touched on the Water Footprint Assessment; he believes it has provided a sound method to analyse the water footprint in the relevant context and formulate appropriate response strategies. “The water-footprint assessment breaks down the different water-footprint components and checks the sustainability of these components against three sets of criteria: environmental, economic, and social. The application of the Water Footprint Assessment has evolved from basic quantitative studies to a powerful advocacy tool that can support decision-making and policy processes and help mitigate water-related business risk.

“Counting water drops is simple, yet unravelling the underlying complexities is the key! I count on you to start by counting water drops in counting for sustainable growth,” he concluded.

News Archive

Getting out of the dark
2015-04-28

Photo: Leonie Bolleurs

Since 2008, the University of the Free State has been busy with the planning and implementation of projects to reduce the impact of load shedding. To date,  the cost of these projects has run to R6 million. They have been done primarily to ensure that the academic programme does not suffer damage as a result of the increasing interruptions in the power supply that are continuing this year.

The university’s greatest concern has been the provision of emergency power to the lecture halls and laboratories.

Thus far, 35 generators are servicing 55 buildings on the three campuses of the UFS. This includes 26 generators on the Bloemfontein Campus, eight on the Qwaqwa Campus in the Eastern Free State, and one generator on the South Campus in Bloemfontein. The generators are already in service, and are maintained in working order.

Since 2010, the university has also ensured that all newly-built academic buildings are equipped with emergency power supplies.

On the South Campus in Bloemfontein, the new lecture-hall building and the computer laboratory are equipped with emergency power, while the installation of emergency generators in other buildings is under way. The majority of the buildings on the Qwaqwa Campus in the Eastern Free State are equipped with emergency power supplies.

In the meantime, the UFS management has approved a further R11 million for the installation of additional generators on the three campuses. A further R1.5 million has also been approved for the purchase of two mobile generators.

To extend the work already done, the main task will be the installation of more generators on the Bloemfontein Campus to ensure that lecture halls with emergency power will be available for the centrally-arranged timetables, and to ensure that more of the critical laboratories will be provided with emergency power.

There are still  some important buildings and halls on the Bloemfontein Campus that must be supplied with emergency power. However, it is a costly process and must be brought into operation gradually. The further implementation of emergency power depends on the delivery of equipment. The university is also investigating alternative solutions for power provisioning, including solar power.

Generators with spare capacity are optimally deployed to satisfy the lower needs of the campus, including the Odeion, the ANNEX at Microbiology, the Stabilis ANNEX, the Agriculture Building, the UV-Sasol library, and the Francois Retief Building.

In addition, the UFS  is busy on all campuses, coupling area lighting, including

street lights and pedestrian walkways, to existing generators. Procedures for the operation of mechanical equipment, such as entrance gates, lifts, and so on, are currently being dealt with on all campuses. Continuous power sources for certain ICT equipment will be installed on all campuses to protect it against power surges.

Staff and students can also equip themselves with the necessary knowledge to manage load shedding in their specific areas of work and study. It is always helpful to know who to contact. The following list with guidelines and contact numbers has been compiled to assist you:

1. In an emergency, call Protection Services. This line will continue to operate, regardless of whether the power is on or off.
2. Avoid using lifts just before planned load shedding. Some lifts have emergency power packs which will bring the lift to the nearest floor and open the doors. If you still get stuck in a lift during a power outage, use your cellphone to call Protection Services. While you're waiting, stay calm and be patient.
3. If the access control systems in your building stop working after load shedding, contact Protection Services.
4. The students and staff members who are most at risk during load shedding are those in wheelchairs or with other mobility limitations. As far as possible, plan ahead to avoid being stuck on a floor or in a room that is difficult to access when load shedding is imminent. Please contact Protection Services if you need assistance.
5. During a fire, alarms WILL go off. Alarms are not power driven, but battery driven. For assistance, contact Protection Services.
6. The main UFS Switchboard (Bloemfontein Campus +27(0)51 401 9111 and Qwaqwa Campus +27(0)58 718 5000) will continue to operate during load shedding.

Contact details of Protection Services:

  • Bloemfontein Campus: +27(0)51 401 2634/2911
  • Qwaqwa Campus: +27(0)58 508 5460/5175
  • South Campus: +27(0)51 5051217

Communication and Brand Management will make information available on the UFS web, Facebook page, Twitter, Blackboard and the intranet. Get the load shedding schedule from Eskom’s webpage (http://loadshedding.eskom.co.za/). The Bloemfontein Campus falls in group 4 and the South Campus falls in group 2 in Centlec’s load shedding schedule.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept