Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 April 2019 | Story Leonie Bolleurs | Photo JohanRoux
Prof Chapagain  Inaugural
Prof Ashok Chapagain, Senior Professor in the Department of Agricultural Economics, recently delivered his inaugural lecture on the university’s Bloemfontein Campus. The title of his lecture was Counting Water: Simple yet Complex. From the left are: Dr Engela van Staden, Vice-Rector: Academic; Prof Ashok, Dr Frikkie Maré, Head of the Department of Agricultural Economics; and Prof Danie Vermeulen, Dean of the Faculty of Natural and Agricultural Sciences.

Virtually every economic sector, from agriculture, power generation, manufacturing, beverage, and apparel to tourism, relies on fresh water to sustain its business. Yet, water scarcity and water-pollution levels in river basins around the world are increasing due to growing populations, changing consumption patterns, and poor water governance.

These are the words of Prof Ashok Chapagain, Senior Professor in the Department of Agricultural Economics at the University of the Free State (UFS), who recently delivered his inaugural lecture on the university’s Bloemfontein Campus. The title of his lecture was Counting Water: Simple yet Complex.

He believes that in a world of increasing interconnectedness, equitable and sustainable resource management has become not only a local phenomenon, but also a global one. “The critical factors in managing these resources lie at both ends of the production and consumption chains. The interlinkages between agriculture, trade, economic, and energy policy and water-resources management must be understood,” he said.

Water footprint from farm to cup

The water footprint of a product is the volume of fresh water used to produce the product, measured over the various steps of the production chain. Water use is measured in terms of water volumes consumed or polluted, e.g. a cup of black coffee would take 140 litres of water as a result of water used in various processes, from the farm to the cup! 

Prof Chapagain said: “With the emergence of the water footprint concept, the public could for the first time see that the issue is not only related to direct water use in their houses, but also to their consumption of goods and services, such as food, fibre, and electricity. For example, a developed nation would typically state their water consumption data as around 100-200 litres per capita per day. This information is misleading, as it does not capture the massive amount of water needed to produce food, goods, and services consumed by the nation, which makes the daily water consumption a whopping 3 000-8 000 litres in these developed nations. Consumers, governments, and businesses are beginning to understand how their interests could be sustained in the long run, using this new approach to water-resource management.”

He also spoke about water as an economic enabler. According to him, harnessing the full benefit of water is constrained by three limits: hydrological limits, limits in production efficiency, limits and risks in externalising water footprints. He further elaborated, “Each river basin is unique with respect to amount of rainfall and pattern, rainfall-runoff relation, total available runoff, environmental flow requirements, groundwater recharge, etc. The actual available quantity of water is determined by all these parameters. Hence, there is a hydrological limit to water use in a river basin/aquifers”. He said: “On the other hand, making a process more efficient comes at a price, marking a limit on local efficiency gains. Similarly, importing virtual water to relieve pressure on local water resources would require second-order resources such as foreign currency, and a political will to move from a ‘water and food self-sufficiency’ policy towards a ‘water and food security’ policy. Enhancing the global water-use efficiency by means of trade has socio-economic limitations.” His current research focuses on unravelling these limits to growth, and on developing a generic analytical framework to find optimal solutions to growth under these water limits.

Trade can relieve the strain

Regarding the latter, he said trade in water-intensive goods and services could help relieve the strain on local/national water resources. For example, Switzerland covers merely 18% of its water demand from its internal water resources, i.e. 82% of it is external! South Africa’s external water footprint is only 22% of the total water footprint of national consumption. Hence, the scope of international trade to help alleviate local scarcity is limited by the availability of second-order resources such as foreign exchange, institutional capacity, socio-political context, etc. 

However, globalisation of fresh water brings both risks and opportunities. “Although national water resources could be saved for best alternative uses, the risks of a growing external dependency and the associated risks related to events elsewhere, are often not visible. These water-intensive production processes are vulnerable to the availability of water at the various locations where the production processes take place. The vulnerabilities may result from a range of factors – from reduced river flows, lowered lake levels, and declined ground-water tables to increased salt intrusion in coastal areas, pollution of freshwater bodies, droughts, and a changing climate,” he said.

Water footprint assessment

Prof Chapagain also touched on the Water Footprint Assessment; he believes it has provided a sound method to analyse the water footprint in the relevant context and formulate appropriate response strategies. “The water-footprint assessment breaks down the different water-footprint components and checks the sustainability of these components against three sets of criteria: environmental, economic, and social. The application of the Water Footprint Assessment has evolved from basic quantitative studies to a powerful advocacy tool that can support decision-making and policy processes and help mitigate water-related business risk.

“Counting water drops is simple, yet unravelling the underlying complexities is the key! I count on you to start by counting water drops in counting for sustainable growth,” he concluded.

News Archive

Getting out of the dark
2015-06-10

 

ESKOM is making daily announcements on the status of the power grid.

Anton Calitz, Electrical Engineer at University Estates, is in continuous contact with Eskom and Centlec in an effort to stay abreast of load shedding.

According to Anton, Eskom has recently - the week of 20 April - been focusing on the evening peak, and has announced STAGE 1 load shedding from 17:00-22:00; thus, the Bloemfontein Campus should be able to continue business as usual during the day, except for Thursdays from 18:00 and, possibly, Fridays from 17:00.

Where can I get more information about load shedding stages?

Apart from Eskom’s webpage, staff can also visit GRID WATCH. Click on "Search", then under "Schedules". Look for "Mangaung Local Municipality", and select "GROUP 4". Save this location. “This can even be loaded onto your mobile device.”

“The time slots can be seen for a couple of days in advance, to allow us to plan around the possibility of load shedding in our daily lives,” said Anton.

Please note: ESKOM can change the STAGE level at any time. Therefore, keep an eye on GRID WATCH and News24.

View the typical seven-day planner for the Bloemfontein Campus (Group 4), which indicates the STAGE 2 and 3 possibilities. Take note that, on some days, the STAGE 2 and 3 time slots are the same.

More load shedding tips: Your IT needs

The UFS Data Centre (Computer Room) is fully serviced by a generator facility, and can function without external power supply for a few days.

The generator servicing the UFS data centre does NOT provide power to the outlying facilities. This implies that all digital equipment at gates, booms, and access points will be shut down until the power is restored to these facilities. “We are now, in collaboration with Nico Janse van Rensburg, in a process to install UPS facilities at these points, which will ensure two to three hours of power supply at these points, even during load shedding,” said Dr Vic Coetzee, Senior Director: ICT Services.

No Wi-Fi will be available, as it is dependent on the power supply to the buildings where it is installed.

All servers are contained in the data centre, and will be kept running by our generators.

How to manage load shedding and your IT needs:

1. Get into the habit of saving your work regularly on computer so that you don’t lose your work/files during load shedding.
2. Back up important data. Keep to a schedule of regular back-up.  Make sure your computer back-ups are safe and recoverable.
3. Keep all electronic devices charged and ready to run on battery power. Keep your cellphone charged: some old-style Telkom landlines will still operate during power outages, but others won't.
4. Remember, when power supply is restored, it sometimes happens that a power surge is sent through the network, which will damage your computer.  Fortunately, laptop computers will not suffer this fate as their power is provided through an external power pack. Often, this power pack will be damaged, but not the laptop itself.
5. It makes good sense to reboot your computer daily, not only in terms of power shedding, but also in terms of updating the drivers, software, etc.
6. Switch off all computers and other electrical equipment at the wall plug overnight and on weekends.
7. Should your IT equipment not switch on after a power outage, log a call with the ICT Services. You can also call them at x2000.

More information, guidelines and contact numbers

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept