Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 April 2019 | Story Leonie Bolleurs | Photo JohanRoux
Prof Chapagain  Inaugural
Prof Ashok Chapagain, Senior Professor in the Department of Agricultural Economics, recently delivered his inaugural lecture on the university’s Bloemfontein Campus. The title of his lecture was Counting Water: Simple yet Complex. From the left are: Dr Engela van Staden, Vice-Rector: Academic; Prof Ashok, Dr Frikkie Maré, Head of the Department of Agricultural Economics; and Prof Danie Vermeulen, Dean of the Faculty of Natural and Agricultural Sciences.

Virtually every economic sector, from agriculture, power generation, manufacturing, beverage, and apparel to tourism, relies on fresh water to sustain its business. Yet, water scarcity and water-pollution levels in river basins around the world are increasing due to growing populations, changing consumption patterns, and poor water governance.

These are the words of Prof Ashok Chapagain, Senior Professor in the Department of Agricultural Economics at the University of the Free State (UFS), who recently delivered his inaugural lecture on the university’s Bloemfontein Campus. The title of his lecture was Counting Water: Simple yet Complex.

He believes that in a world of increasing interconnectedness, equitable and sustainable resource management has become not only a local phenomenon, but also a global one. “The critical factors in managing these resources lie at both ends of the production and consumption chains. The interlinkages between agriculture, trade, economic, and energy policy and water-resources management must be understood,” he said.

Water footprint from farm to cup

The water footprint of a product is the volume of fresh water used to produce the product, measured over the various steps of the production chain. Water use is measured in terms of water volumes consumed or polluted, e.g. a cup of black coffee would take 140 litres of water as a result of water used in various processes, from the farm to the cup! 

Prof Chapagain said: “With the emergence of the water footprint concept, the public could for the first time see that the issue is not only related to direct water use in their houses, but also to their consumption of goods and services, such as food, fibre, and electricity. For example, a developed nation would typically state their water consumption data as around 100-200 litres per capita per day. This information is misleading, as it does not capture the massive amount of water needed to produce food, goods, and services consumed by the nation, which makes the daily water consumption a whopping 3 000-8 000 litres in these developed nations. Consumers, governments, and businesses are beginning to understand how their interests could be sustained in the long run, using this new approach to water-resource management.”

He also spoke about water as an economic enabler. According to him, harnessing the full benefit of water is constrained by three limits: hydrological limits, limits in production efficiency, limits and risks in externalising water footprints. He further elaborated, “Each river basin is unique with respect to amount of rainfall and pattern, rainfall-runoff relation, total available runoff, environmental flow requirements, groundwater recharge, etc. The actual available quantity of water is determined by all these parameters. Hence, there is a hydrological limit to water use in a river basin/aquifers”. He said: “On the other hand, making a process more efficient comes at a price, marking a limit on local efficiency gains. Similarly, importing virtual water to relieve pressure on local water resources would require second-order resources such as foreign currency, and a political will to move from a ‘water and food self-sufficiency’ policy towards a ‘water and food security’ policy. Enhancing the global water-use efficiency by means of trade has socio-economic limitations.” His current research focuses on unravelling these limits to growth, and on developing a generic analytical framework to find optimal solutions to growth under these water limits.

Trade can relieve the strain

Regarding the latter, he said trade in water-intensive goods and services could help relieve the strain on local/national water resources. For example, Switzerland covers merely 18% of its water demand from its internal water resources, i.e. 82% of it is external! South Africa’s external water footprint is only 22% of the total water footprint of national consumption. Hence, the scope of international trade to help alleviate local scarcity is limited by the availability of second-order resources such as foreign exchange, institutional capacity, socio-political context, etc. 

However, globalisation of fresh water brings both risks and opportunities. “Although national water resources could be saved for best alternative uses, the risks of a growing external dependency and the associated risks related to events elsewhere, are often not visible. These water-intensive production processes are vulnerable to the availability of water at the various locations where the production processes take place. The vulnerabilities may result from a range of factors – from reduced river flows, lowered lake levels, and declined ground-water tables to increased salt intrusion in coastal areas, pollution of freshwater bodies, droughts, and a changing climate,” he said.

Water footprint assessment

Prof Chapagain also touched on the Water Footprint Assessment; he believes it has provided a sound method to analyse the water footprint in the relevant context and formulate appropriate response strategies. “The water-footprint assessment breaks down the different water-footprint components and checks the sustainability of these components against three sets of criteria: environmental, economic, and social. The application of the Water Footprint Assessment has evolved from basic quantitative studies to a powerful advocacy tool that can support decision-making and policy processes and help mitigate water-related business risk.

“Counting water drops is simple, yet unravelling the underlying complexities is the key! I count on you to start by counting water drops in counting for sustainable growth,” he concluded.

News Archive

UFS PhD student receives more than R5,8 million to take agricultural research to African farmers
2015-07-06

Prof Maryke Labuschagne and Bright Peprah. (Photo: Supplied)

Bright Peprah, a Plant Breeding PhD student from Ghana in the Department of Plant Sciences at the University of the Free State received an award from the competitive Program for Emerging Agricultural Research Leaders (PEARL) of the Bill and Melinda Gates Foundation (BMGF) for one of his projects.

From the more than 750 proposals for funding that were received from African researchers, only 19 received funding from PEARL. PEARL is an agricultural initiative by the BMGF to take agricultural research products to African farmers. It also aims at involving the youth and women in agriculture.

Peprah’s proposal to introgress beta carotene into farmer-preferred cassava landraces was part of the final 19 proposals funded. The project is being led by the Council for Scientific and Industrial Research (CSIR)Crops Research Institute (CRI), and has the International Institute of Tropical Agriculture (IITA) and the International Centre for Tropical Agriculture (CIAT) as international partners with Peprah as the principal investigator.


The development of nutrient-dense cassava cultivars needs attention to eliminate the ramifications of malnutrition among the poor in an inexpensive and more sustainable way.
Photo: Supplied

He received $473 000 (R5,8 million) for his project on the improvement of beta-carotene content in cassava.

Peprah decided on this project because the populations of underdeveloped and developing countries, such as Ghana, commonly suffer undernourishment and/or hidden hunger, predisposing them to diseases from micronutrients deficiencies. “Vitamin A deficiency constitutes an endemic public health problem which affects women and children largely,” he says.

“In Africa, cassava is widely consumed by the populace. Unfortunately, in these areas, malnutrition is endemic to a significant extent, partly due to the low micronutrients in this tuberous root crop, which is a major component of most household diets. It is for this reason that the development of nutrient- dense cassava cultivars needs much attention to eliminate the ramifications of malnutrition among the poor in an inexpensive and more sustainable way.

“To date we have selected top eight genotypes from germplasm collected from the International Institute of Tropical Agriculture (IITA) which are high in carotenoids and also poundable, a key trait to Ghanaian farmers. These eight genotypes have been planted at different locations in Ghana, and being evaluated by different stakeholders (consumers, researchers, producers, commercial farmers, processors, etc.). If found suitable, the genotypes will be released to farmers, which we hope will solve some of the micronutrient problems in Ghana.

“My projects seek to develop new cassava varieties that will have both high dry matter and beta carotene which has been reported to be negatively correlated (as one increase, the other decreases). The breeding method will be crossing varieties that are high in beta carotene with those with high dry matter, and checking the performance of the seedlings later. Developing such new varieties (yellow flesh cassava) will increase their adoption rate by Ghanaian farmers,” he said.

Prof Maryke Labuschagne, Professor in Plant Breeding in the Department Plant Sciences and Peprah’s study leader, said: “This project has the potential to alleviate vitamin A deficiency in the West African region, where this deficiency is rampant, causing blindness in many people, especially children."

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept