Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 April 2019 | Story Leonie Bolleurs | Photo JohanRoux
Prof Chapagain  Inaugural
Prof Ashok Chapagain, Senior Professor in the Department of Agricultural Economics, recently delivered his inaugural lecture on the university’s Bloemfontein Campus. The title of his lecture was Counting Water: Simple yet Complex. From the left are: Dr Engela van Staden, Vice-Rector: Academic; Prof Ashok, Dr Frikkie Maré, Head of the Department of Agricultural Economics; and Prof Danie Vermeulen, Dean of the Faculty of Natural and Agricultural Sciences.

Virtually every economic sector, from agriculture, power generation, manufacturing, beverage, and apparel to tourism, relies on fresh water to sustain its business. Yet, water scarcity and water-pollution levels in river basins around the world are increasing due to growing populations, changing consumption patterns, and poor water governance.

These are the words of Prof Ashok Chapagain, Senior Professor in the Department of Agricultural Economics at the University of the Free State (UFS), who recently delivered his inaugural lecture on the university’s Bloemfontein Campus. The title of his lecture was Counting Water: Simple yet Complex.

He believes that in a world of increasing interconnectedness, equitable and sustainable resource management has become not only a local phenomenon, but also a global one. “The critical factors in managing these resources lie at both ends of the production and consumption chains. The interlinkages between agriculture, trade, economic, and energy policy and water-resources management must be understood,” he said.

Water footprint from farm to cup

The water footprint of a product is the volume of fresh water used to produce the product, measured over the various steps of the production chain. Water use is measured in terms of water volumes consumed or polluted, e.g. a cup of black coffee would take 140 litres of water as a result of water used in various processes, from the farm to the cup! 

Prof Chapagain said: “With the emergence of the water footprint concept, the public could for the first time see that the issue is not only related to direct water use in their houses, but also to their consumption of goods and services, such as food, fibre, and electricity. For example, a developed nation would typically state their water consumption data as around 100-200 litres per capita per day. This information is misleading, as it does not capture the massive amount of water needed to produce food, goods, and services consumed by the nation, which makes the daily water consumption a whopping 3 000-8 000 litres in these developed nations. Consumers, governments, and businesses are beginning to understand how their interests could be sustained in the long run, using this new approach to water-resource management.”

He also spoke about water as an economic enabler. According to him, harnessing the full benefit of water is constrained by three limits: hydrological limits, limits in production efficiency, limits and risks in externalising water footprints. He further elaborated, “Each river basin is unique with respect to amount of rainfall and pattern, rainfall-runoff relation, total available runoff, environmental flow requirements, groundwater recharge, etc. The actual available quantity of water is determined by all these parameters. Hence, there is a hydrological limit to water use in a river basin/aquifers”. He said: “On the other hand, making a process more efficient comes at a price, marking a limit on local efficiency gains. Similarly, importing virtual water to relieve pressure on local water resources would require second-order resources such as foreign currency, and a political will to move from a ‘water and food self-sufficiency’ policy towards a ‘water and food security’ policy. Enhancing the global water-use efficiency by means of trade has socio-economic limitations.” His current research focuses on unravelling these limits to growth, and on developing a generic analytical framework to find optimal solutions to growth under these water limits.

Trade can relieve the strain

Regarding the latter, he said trade in water-intensive goods and services could help relieve the strain on local/national water resources. For example, Switzerland covers merely 18% of its water demand from its internal water resources, i.e. 82% of it is external! South Africa’s external water footprint is only 22% of the total water footprint of national consumption. Hence, the scope of international trade to help alleviate local scarcity is limited by the availability of second-order resources such as foreign exchange, institutional capacity, socio-political context, etc. 

However, globalisation of fresh water brings both risks and opportunities. “Although national water resources could be saved for best alternative uses, the risks of a growing external dependency and the associated risks related to events elsewhere, are often not visible. These water-intensive production processes are vulnerable to the availability of water at the various locations where the production processes take place. The vulnerabilities may result from a range of factors – from reduced river flows, lowered lake levels, and declined ground-water tables to increased salt intrusion in coastal areas, pollution of freshwater bodies, droughts, and a changing climate,” he said.

Water footprint assessment

Prof Chapagain also touched on the Water Footprint Assessment; he believes it has provided a sound method to analyse the water footprint in the relevant context and formulate appropriate response strategies. “The water-footprint assessment breaks down the different water-footprint components and checks the sustainability of these components against three sets of criteria: environmental, economic, and social. The application of the Water Footprint Assessment has evolved from basic quantitative studies to a powerful advocacy tool that can support decision-making and policy processes and help mitigate water-related business risk.

“Counting water drops is simple, yet unravelling the underlying complexities is the key! I count on you to start by counting water drops in counting for sustainable growth,” he concluded.

News Archive

Suspension of the South African Doping Control Laboratory (SADoCoL) by the World Anti-Doping Agency (WADA)
2016-05-04

The senior leadership of the UFS and the management of the South African Doping Control Laboratory (SADoCoL) take note of the decision by the World Anti-Doping Agency (WADA) to suspend the laboratory’s accreditation to perform doping control analysis on biological samples of athletes and sportsmen and -women until 30 September 2016. During this time of suspension, all sport-related samples will be sent for analysis to the WADA accredited laboratory in Qatar until the accreditation of SADoCoL is re-established. Analysis according to WADA accreditation will therefore not be interrupted during the period of the suspension of the accreditation of SADoCoL.

The announcement by WADA on 3 May 2016 follows a voluntary decision by SADoCoL in March 2016 to temporarily close the laboratory for some of its routine analytical duties for six months, as from 1 April 2016. The decision was taken in consultation with the senior leadership of the UFS and other role players, especially the Department of Sport and Recreation of South Africa (SRSA) and the South African Institute for Drug-Free Sport (SAIDS). SADoCoL is a specialised service laboratory of the University of the Free State (UFS) and has been in existence for more than thirty years.

Due to the ever-increasing demands on the number, variety and analytical sensitivity of compounds to be analysed according to the Prohibited List of WADA, technical and infrastructure adaptations need to be implemented in the laboratory continuously to keep up with the demands. Over the last year, SADoCoL has drastically increased its capacity in both personnel and infrastructure, to a point where these changes can be implemented for optimal performance of the laboratory.  This has to be done while normal routine analysis continues, and it became clear that at present, implementation cannot be successfully accomplished together with the workload from normal routine analyses.

The time of suspension will be utilised to implement and test these new systems in order to achieve the standard presently required by WADA, as well as to perform development and improvements.  This development will be performed in close collaboration with other role players in the anti-doping movement in South Africa, such as SAIDS and SRSA. Scientific development aid will also be acquired from other doping control laboratories worldwide in order to assure that the high analytical quality is maintained and expanded to meet the fast growing challenges in this field. The progress of the process will be closely monitored, and the upgraded methodologies will then, after rigorous testing, be implemented to ensure that the required analytical quality is maintained so as to obtain re-accreditation by WADA at the conclusion of the suspension period.

Issued by: Lacea Loader (Director: Communication and Brand Management)
Telephone: +27(0)51 401 2584 or +27 (0) 83 645 2454
E-mail: news@ufs.ac.za
Fax: +27 (0) 51 444 6393

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept