Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 April 2019 | Story Leonie Bolleurs | Photo JohanRoux
Prof Chapagain  Inaugural
Prof Ashok Chapagain, Senior Professor in the Department of Agricultural Economics, recently delivered his inaugural lecture on the university’s Bloemfontein Campus. The title of his lecture was Counting Water: Simple yet Complex. From the left are: Dr Engela van Staden, Vice-Rector: Academic; Prof Ashok, Dr Frikkie Maré, Head of the Department of Agricultural Economics; and Prof Danie Vermeulen, Dean of the Faculty of Natural and Agricultural Sciences.

Virtually every economic sector, from agriculture, power generation, manufacturing, beverage, and apparel to tourism, relies on fresh water to sustain its business. Yet, water scarcity and water-pollution levels in river basins around the world are increasing due to growing populations, changing consumption patterns, and poor water governance.

These are the words of Prof Ashok Chapagain, Senior Professor in the Department of Agricultural Economics at the University of the Free State (UFS), who recently delivered his inaugural lecture on the university’s Bloemfontein Campus. The title of his lecture was Counting Water: Simple yet Complex.

He believes that in a world of increasing interconnectedness, equitable and sustainable resource management has become not only a local phenomenon, but also a global one. “The critical factors in managing these resources lie at both ends of the production and consumption chains. The interlinkages between agriculture, trade, economic, and energy policy and water-resources management must be understood,” he said.

Water footprint from farm to cup

The water footprint of a product is the volume of fresh water used to produce the product, measured over the various steps of the production chain. Water use is measured in terms of water volumes consumed or polluted, e.g. a cup of black coffee would take 140 litres of water as a result of water used in various processes, from the farm to the cup! 

Prof Chapagain said: “With the emergence of the water footprint concept, the public could for the first time see that the issue is not only related to direct water use in their houses, but also to their consumption of goods and services, such as food, fibre, and electricity. For example, a developed nation would typically state their water consumption data as around 100-200 litres per capita per day. This information is misleading, as it does not capture the massive amount of water needed to produce food, goods, and services consumed by the nation, which makes the daily water consumption a whopping 3 000-8 000 litres in these developed nations. Consumers, governments, and businesses are beginning to understand how their interests could be sustained in the long run, using this new approach to water-resource management.”

He also spoke about water as an economic enabler. According to him, harnessing the full benefit of water is constrained by three limits: hydrological limits, limits in production efficiency, limits and risks in externalising water footprints. He further elaborated, “Each river basin is unique with respect to amount of rainfall and pattern, rainfall-runoff relation, total available runoff, environmental flow requirements, groundwater recharge, etc. The actual available quantity of water is determined by all these parameters. Hence, there is a hydrological limit to water use in a river basin/aquifers”. He said: “On the other hand, making a process more efficient comes at a price, marking a limit on local efficiency gains. Similarly, importing virtual water to relieve pressure on local water resources would require second-order resources such as foreign currency, and a political will to move from a ‘water and food self-sufficiency’ policy towards a ‘water and food security’ policy. Enhancing the global water-use efficiency by means of trade has socio-economic limitations.” His current research focuses on unravelling these limits to growth, and on developing a generic analytical framework to find optimal solutions to growth under these water limits.

Trade can relieve the strain

Regarding the latter, he said trade in water-intensive goods and services could help relieve the strain on local/national water resources. For example, Switzerland covers merely 18% of its water demand from its internal water resources, i.e. 82% of it is external! South Africa’s external water footprint is only 22% of the total water footprint of national consumption. Hence, the scope of international trade to help alleviate local scarcity is limited by the availability of second-order resources such as foreign exchange, institutional capacity, socio-political context, etc. 

However, globalisation of fresh water brings both risks and opportunities. “Although national water resources could be saved for best alternative uses, the risks of a growing external dependency and the associated risks related to events elsewhere, are often not visible. These water-intensive production processes are vulnerable to the availability of water at the various locations where the production processes take place. The vulnerabilities may result from a range of factors – from reduced river flows, lowered lake levels, and declined ground-water tables to increased salt intrusion in coastal areas, pollution of freshwater bodies, droughts, and a changing climate,” he said.

Water footprint assessment

Prof Chapagain also touched on the Water Footprint Assessment; he believes it has provided a sound method to analyse the water footprint in the relevant context and formulate appropriate response strategies. “The water-footprint assessment breaks down the different water-footprint components and checks the sustainability of these components against three sets of criteria: environmental, economic, and social. The application of the Water Footprint Assessment has evolved from basic quantitative studies to a powerful advocacy tool that can support decision-making and policy processes and help mitigate water-related business risk.

“Counting water drops is simple, yet unravelling the underlying complexities is the key! I count on you to start by counting water drops in counting for sustainable growth,” he concluded.

News Archive

Students receive hands-on crime scene investigation training
2016-09-02

Description: Crime scene investigation training Tags: Crime scene investigation training

Ntau Mafisa, a forensic science honours student
at the UFS, and Captain Samuel Sethunya from
the SAPS Crime Scene Management in
Bloemfontein.
Photo: Leonie Bolleurs

With murder and robbery rates on the rise, the Forensic Science Programme of the Department of Genetics at the University of the Free State is playing a key role in training South Africa’s future crime scene investigators and forensic laboratory analysts.

According to the Institute for Security Studies (ISS), murder and aggravated robbery rates for 2014/2015, as recorded by the South African Police Services (SAPS) have increased. Incidents of murder increased by 4.6% in the period from 2013/2014 to 2014/2015 and aggravated robbery increased by 8.5 % in the same period. The ISS is an African organisation thant enhances human security by providing independent and authoritative research, expert policy advice and capacity building.

Dr Ellen Mwenesongole, a forensic science lecturer at the Department of Genetics, said the university was one of a few universities in South Africa that actually had a forensic science programme, especially starting from undergraduate level.

Crime scene evaluation component incorporated in curriculum
As part of its Forensic Science Honours Programme, the department has, for the first time, incorporated a mock crime scene evaluation component in its curriculum. Students process a mock crime scene and are assessed based on how closely they follow standard operating procedures related to crime scenes and subsequent laboratory analysis of items of possible evidential value.

The mock crime scene forms part of a research project data collection of the honours students. In these projects students utilise different analytical methods to analyse and distinguish between different types of evidence such as hair fibres, cigarette butts, illicit drugs and dyes extracted from questioned documents and lipsticks.

Students utilise different analytical methods to analyse
and distinguish between different types of evidence.

This year, the department trained the first group of nine students in the Forensic Science Honours Programme. Dr Mwenesongole, who received her training in the UK at the University of Strathclyde in Glasgow, Scotland, and Anglia Ruskin University in Cambridge, England, said incorporating a crime scene evaluation component into the curriculum was a global trend at universities that were offering forensic science programmes.

Department of Genetics and SAPS collaborate
It is important to add this component to the student’s curriculum. In this way the university is equipping students not only with theoretical knowledge but practical knowledge on the importance of following proper protocol when collecting evidence at crime scenes and analysing it in the laboratory to reduce the risk of it becoming inadmissible in a court of law.

The Genetics Department has a good working relationship with the Forensic Science Laboratory and Free State Crime Scene Management of the Division Forensic Services of the SAPS. The mock crime scene was set up and assessed in collaboration with the Crime Scene Management Division of the SAPS. Although the SAPS provides specialist advanced training to its staff members, the university hopes to improve employability for students through such programmes.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept