Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 April 2019 | Story Leonie Bolleurs | Photo JohanRoux
Prof Chapagain  Inaugural
Prof Ashok Chapagain, Senior Professor in the Department of Agricultural Economics, recently delivered his inaugural lecture on the university’s Bloemfontein Campus. The title of his lecture was Counting Water: Simple yet Complex. From the left are: Dr Engela van Staden, Vice-Rector: Academic; Prof Ashok, Dr Frikkie Maré, Head of the Department of Agricultural Economics; and Prof Danie Vermeulen, Dean of the Faculty of Natural and Agricultural Sciences.

Virtually every economic sector, from agriculture, power generation, manufacturing, beverage, and apparel to tourism, relies on fresh water to sustain its business. Yet, water scarcity and water-pollution levels in river basins around the world are increasing due to growing populations, changing consumption patterns, and poor water governance.

These are the words of Prof Ashok Chapagain, Senior Professor in the Department of Agricultural Economics at the University of the Free State (UFS), who recently delivered his inaugural lecture on the university’s Bloemfontein Campus. The title of his lecture was Counting Water: Simple yet Complex.

He believes that in a world of increasing interconnectedness, equitable and sustainable resource management has become not only a local phenomenon, but also a global one. “The critical factors in managing these resources lie at both ends of the production and consumption chains. The interlinkages between agriculture, trade, economic, and energy policy and water-resources management must be understood,” he said.

Water footprint from farm to cup

The water footprint of a product is the volume of fresh water used to produce the product, measured over the various steps of the production chain. Water use is measured in terms of water volumes consumed or polluted, e.g. a cup of black coffee would take 140 litres of water as a result of water used in various processes, from the farm to the cup! 

Prof Chapagain said: “With the emergence of the water footprint concept, the public could for the first time see that the issue is not only related to direct water use in their houses, but also to their consumption of goods and services, such as food, fibre, and electricity. For example, a developed nation would typically state their water consumption data as around 100-200 litres per capita per day. This information is misleading, as it does not capture the massive amount of water needed to produce food, goods, and services consumed by the nation, which makes the daily water consumption a whopping 3 000-8 000 litres in these developed nations. Consumers, governments, and businesses are beginning to understand how their interests could be sustained in the long run, using this new approach to water-resource management.”

He also spoke about water as an economic enabler. According to him, harnessing the full benefit of water is constrained by three limits: hydrological limits, limits in production efficiency, limits and risks in externalising water footprints. He further elaborated, “Each river basin is unique with respect to amount of rainfall and pattern, rainfall-runoff relation, total available runoff, environmental flow requirements, groundwater recharge, etc. The actual available quantity of water is determined by all these parameters. Hence, there is a hydrological limit to water use in a river basin/aquifers”. He said: “On the other hand, making a process more efficient comes at a price, marking a limit on local efficiency gains. Similarly, importing virtual water to relieve pressure on local water resources would require second-order resources such as foreign currency, and a political will to move from a ‘water and food self-sufficiency’ policy towards a ‘water and food security’ policy. Enhancing the global water-use efficiency by means of trade has socio-economic limitations.” His current research focuses on unravelling these limits to growth, and on developing a generic analytical framework to find optimal solutions to growth under these water limits.

Trade can relieve the strain

Regarding the latter, he said trade in water-intensive goods and services could help relieve the strain on local/national water resources. For example, Switzerland covers merely 18% of its water demand from its internal water resources, i.e. 82% of it is external! South Africa’s external water footprint is only 22% of the total water footprint of national consumption. Hence, the scope of international trade to help alleviate local scarcity is limited by the availability of second-order resources such as foreign exchange, institutional capacity, socio-political context, etc. 

However, globalisation of fresh water brings both risks and opportunities. “Although national water resources could be saved for best alternative uses, the risks of a growing external dependency and the associated risks related to events elsewhere, are often not visible. These water-intensive production processes are vulnerable to the availability of water at the various locations where the production processes take place. The vulnerabilities may result from a range of factors – from reduced river flows, lowered lake levels, and declined ground-water tables to increased salt intrusion in coastal areas, pollution of freshwater bodies, droughts, and a changing climate,” he said.

Water footprint assessment

Prof Chapagain also touched on the Water Footprint Assessment; he believes it has provided a sound method to analyse the water footprint in the relevant context and formulate appropriate response strategies. “The water-footprint assessment breaks down the different water-footprint components and checks the sustainability of these components against three sets of criteria: environmental, economic, and social. The application of the Water Footprint Assessment has evolved from basic quantitative studies to a powerful advocacy tool that can support decision-making and policy processes and help mitigate water-related business risk.

“Counting water drops is simple, yet unravelling the underlying complexities is the key! I count on you to start by counting water drops in counting for sustainable growth,” he concluded.

News Archive

Famelab, the Pop Idols of science communication
2017-03-09

Description: Famelab Tags: UFS, CUT, Science, Competition, research, British Council, Famelab, NRF

Oluwasegun Kuloyo and Zanele Matsane proved to be
Bloemfontein’s young and wittiest science researchers.
They will represent the Free State at the Famelab
national semifinals in Johannesburg.
Photo: Oteng Mpete

Imagine sharks with laser beams attached to their heads and enzymes that wear coats, and yeasts that stage a coup d’état in your body when agitated. This was all explored at the FameLab Science Communication Competition. 

Hosting the FameLab regional competition was a collaborative effort between Dr Mikateko Hoppener, from the University of the Free State’s (UFS), the Centre for Research on Higher Education and Development (CRHED), and Edith Sempe from the Central University of Technology (CUT), Research and Development Unit. Taking place for the first time in the Free State, the event was held at the UFS Centenary Complex on 2 March 2017.

Witty minds make science fun

FameLab is a competition that promotes science and technology by creating a space for scientists to find their voices and reach public audiences. The Free State regional competition had 18 contestants and two emerged victorious on the day. Contestants had to ensure their three-minute talks were fun, charismatic, clear and entertaining.

The two regional winners were Oluwasegun Kuloyo, a PhD student with the department of Microbial Biochemical and Food Biotechnology at UFS, and Zanele Matsane, a Construction Management PhD student at CUT. 

Kuloyo's research deals with the management of the candida yeast which exists in most people’s bodies and which, with a healthy immune system can be kept under control, but when an immune system is compromised, the yeast reacts volatilely and can potentially lead to death in HIV/AIDS patients. 

Matsane’s research is centred on collaborative construction management inspired by the Toyota manufacturing process. She hopes to resolve the silos of construction and bring about a more harmonious and fluid process to construction projects, thus ensuring their successful completion. 

The panel of judges consisted of Oteng Mpete UFS Media Liaison Officer, Dr Elizabeth Conradie from the CUT Innovation Hub, and Prof Willie du Preez from the CUT Centre for Rapid Prototyping and Manufacturing, as well as Robert Inglis from JiveMedia Africa.

Local scientists become jet-setters 
The two regional winners will head to Johannesburg to compete at the FameLab national semifinals, and the South African winner will go on to compete against winners from over 30 countries on an international stage, at the Cheltenham Science Festival in the UK.

FameLab is a programme of the Cheltenham Science Festival and is implemented locally by the South African Agency for Science and Technology Advancement (SAASTA), the British Council, and JiveMedia Africa. The competition has been running in South Africa for the past five years.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept