Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 April 2019 | Story Leonie Bolleurs | Photo JohanRoux
Prof Chapagain  Inaugural
Prof Ashok Chapagain, Senior Professor in the Department of Agricultural Economics, recently delivered his inaugural lecture on the university’s Bloemfontein Campus. The title of his lecture was Counting Water: Simple yet Complex. From the left are: Dr Engela van Staden, Vice-Rector: Academic; Prof Ashok, Dr Frikkie Maré, Head of the Department of Agricultural Economics; and Prof Danie Vermeulen, Dean of the Faculty of Natural and Agricultural Sciences.

Virtually every economic sector, from agriculture, power generation, manufacturing, beverage, and apparel to tourism, relies on fresh water to sustain its business. Yet, water scarcity and water-pollution levels in river basins around the world are increasing due to growing populations, changing consumption patterns, and poor water governance.

These are the words of Prof Ashok Chapagain, Senior Professor in the Department of Agricultural Economics at the University of the Free State (UFS), who recently delivered his inaugural lecture on the university’s Bloemfontein Campus. The title of his lecture was Counting Water: Simple yet Complex.

He believes that in a world of increasing interconnectedness, equitable and sustainable resource management has become not only a local phenomenon, but also a global one. “The critical factors in managing these resources lie at both ends of the production and consumption chains. The interlinkages between agriculture, trade, economic, and energy policy and water-resources management must be understood,” he said.

Water footprint from farm to cup

The water footprint of a product is the volume of fresh water used to produce the product, measured over the various steps of the production chain. Water use is measured in terms of water volumes consumed or polluted, e.g. a cup of black coffee would take 140 litres of water as a result of water used in various processes, from the farm to the cup! 

Prof Chapagain said: “With the emergence of the water footprint concept, the public could for the first time see that the issue is not only related to direct water use in their houses, but also to their consumption of goods and services, such as food, fibre, and electricity. For example, a developed nation would typically state their water consumption data as around 100-200 litres per capita per day. This information is misleading, as it does not capture the massive amount of water needed to produce food, goods, and services consumed by the nation, which makes the daily water consumption a whopping 3 000-8 000 litres in these developed nations. Consumers, governments, and businesses are beginning to understand how their interests could be sustained in the long run, using this new approach to water-resource management.”

He also spoke about water as an economic enabler. According to him, harnessing the full benefit of water is constrained by three limits: hydrological limits, limits in production efficiency, limits and risks in externalising water footprints. He further elaborated, “Each river basin is unique with respect to amount of rainfall and pattern, rainfall-runoff relation, total available runoff, environmental flow requirements, groundwater recharge, etc. The actual available quantity of water is determined by all these parameters. Hence, there is a hydrological limit to water use in a river basin/aquifers”. He said: “On the other hand, making a process more efficient comes at a price, marking a limit on local efficiency gains. Similarly, importing virtual water to relieve pressure on local water resources would require second-order resources such as foreign currency, and a political will to move from a ‘water and food self-sufficiency’ policy towards a ‘water and food security’ policy. Enhancing the global water-use efficiency by means of trade has socio-economic limitations.” His current research focuses on unravelling these limits to growth, and on developing a generic analytical framework to find optimal solutions to growth under these water limits.

Trade can relieve the strain

Regarding the latter, he said trade in water-intensive goods and services could help relieve the strain on local/national water resources. For example, Switzerland covers merely 18% of its water demand from its internal water resources, i.e. 82% of it is external! South Africa’s external water footprint is only 22% of the total water footprint of national consumption. Hence, the scope of international trade to help alleviate local scarcity is limited by the availability of second-order resources such as foreign exchange, institutional capacity, socio-political context, etc. 

However, globalisation of fresh water brings both risks and opportunities. “Although national water resources could be saved for best alternative uses, the risks of a growing external dependency and the associated risks related to events elsewhere, are often not visible. These water-intensive production processes are vulnerable to the availability of water at the various locations where the production processes take place. The vulnerabilities may result from a range of factors – from reduced river flows, lowered lake levels, and declined ground-water tables to increased salt intrusion in coastal areas, pollution of freshwater bodies, droughts, and a changing climate,” he said.

Water footprint assessment

Prof Chapagain also touched on the Water Footprint Assessment; he believes it has provided a sound method to analyse the water footprint in the relevant context and formulate appropriate response strategies. “The water-footprint assessment breaks down the different water-footprint components and checks the sustainability of these components against three sets of criteria: environmental, economic, and social. The application of the Water Footprint Assessment has evolved from basic quantitative studies to a powerful advocacy tool that can support decision-making and policy processes and help mitigate water-related business risk.

“Counting water drops is simple, yet unravelling the underlying complexities is the key! I count on you to start by counting water drops in counting for sustainable growth,” he concluded.

News Archive

UFS students win Innovation prize
2007-11-05

 

From the left are, front: Kasey Kakoma (member of the winning team) and Ji-Yun Lee (member of the winning team); back: Prof. Herman van Schalkwyk (Dean of the Faculty of Natural and Agricultural Sciences at the UFS), Lehlohonolo Mathengtheng (member of the winning team) and Prof. Gerrit van Wyk (consultant from Technology Transfer Projects who arranged the first phase of the competition).
Photo (Leonie Bolleurs):
 

UFS students win Innovation prize

Prizes to the value of R100 000 were recently handed to students in the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) during a prize winners function of the National Innovation Competition.
“The competition is sponsored by the Innovation Fund, which was established by the national Department of Science and Technology and is managed by the National Research Foundation (NRF). The competition seeks to develop innovation and entrepreneurship amongst students in higher education institutions,” said Prof. Teuns Verschoor, Vice-Rector of Academic Operations at the UFS.

Most universities in South Africa take part in the competition. “The first phase of the competition is per university where students can win prize money to the value of R100 000. The three winners then compete in the national competition, where prize money to the value of R600 000 can be won,” said Prof. Verschoor.

Eight teams from the Faculty of Natural and Agricultural Sciences competed in the local competition. The teams had to submit a business plan, which was judged by six external adjudicators.

The winning team from the Department of Microbial, Biochemical and Food Biotechnology submitted their business plan with the title: “Using bacteriophages to combat specific bacterial infections in poultry". The team, consisting of Kasey Kakoma from Zambia, Lehlohonolo Mathengtheng from South Africa, and Ji-Yun Lee from South Korea, were awarded R50 000 in cash. All three students are Master’s degree students in Microbiology in the Veterinary Biotechnology Research group at the UFS.

The team who came second was from the Department of Physics with team leader Lisa Coetzee and they received R30 000. The title of their project was “Light of the future”. The third prize of R20 000 went to Lizette Jordaan of the Department of Chemistry with a project entitled: “Development of a viable synthetic route towards a natural substrate with possible application in the industry”.

Prof. Gerrit van Wyk, former dean of the UFS Faculty of Natural and Agricultural Sciences and consultant for Technology Transfer Projects, annually drives this competition.

In his announcement of the winners of the first phase of the 2007 National Innovation Competition, Prof. Herman van Schalkwyk, Dean of the UFS Faculty of Natural and Agricultural Sciences, said innovation and entrepreneurship are important to stimulate and create sustainable economic growth in South Africa. “Through this competition universities get the opportunity to show to South Africa its capabilities in the arena of innovation and commercialisation of ideas,” he said.

To proceed to the second phase of the competition, the business plans of the three finalists from each qualifying higher education institution will be submitted for the national competition. The best three students from each participating institution will exhibit their innovations at the national awards ceremony early in 2008. The top ten entrants and subsequently the best three business plans from the total entries will then be short listed. The prize money won at the national competition has to be used for the commercialisation of the project or the founding of a company.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
5 November 2007
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept