Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 April 2019 | Story Valentino Ndaba | Photo Charl Devenish
LJ van Zyl
“May the best team win the 2019 BestMed Pedometer Challenge!” said LJ van Zyl, Pedometer Challenge ambassador.

Participants in the 2019 BestMed Pedometer Challenge will start improving their health step by step after the University of the Free State (UFS) challenged the Stellenbosch University, Central University of Technology, and North-West University (NWU) to an eight-week walking competition.

South African 400-metre hurdles record-holder and the Pedometer Challenge ambassador, LJ van Zyl, embraced the initiative as an alternative method to achieve fitness. “I am so tired of running and this is great way to stay fit,” he said during the official launch on the UFS Bloemfontein Campus on 5 April 2019.

Inter-institutional fight for fitness

Last year, the UFS Division for Organisational Development and Employment Wellness in the Department of Human Resources led a UFS-only challenge that saw 60 teams of staff members log a total of 54 606 km in eight weeks. The division then challenged the NWU.

Together, the NWU and UFS walked 132 000 km. This year, the UFS is taking it one step further by challenging two more institutions.
  
Leading the way

“We aim to get South Africa active – starting with the UFS – by embracing fitness and health ourselves,” said Arina Engelbrecht, UFS Employee Wellness Specialist.

Participants on all fitness and activity levels will gun for a 200 000 km target over 10 weeks.

The challenge kicked off on the Bloemfontein Campus with a 3-km walk at the launch, leaving 199 997 km between the four universities for the rest of the eight-week challenge.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept