Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 April 2019 | Story Valentino Ndaba | Photo Charl Devenish
LJ van Zyl
“May the best team win the 2019 BestMed Pedometer Challenge!” said LJ van Zyl, Pedometer Challenge ambassador.

Participants in the 2019 BestMed Pedometer Challenge will start improving their health step by step after the University of the Free State (UFS) challenged the Stellenbosch University, Central University of Technology, and North-West University (NWU) to an eight-week walking competition.

South African 400-metre hurdles record-holder and the Pedometer Challenge ambassador, LJ van Zyl, embraced the initiative as an alternative method to achieve fitness. “I am so tired of running and this is great way to stay fit,” he said during the official launch on the UFS Bloemfontein Campus on 5 April 2019.

Inter-institutional fight for fitness

Last year, the UFS Division for Organisational Development and Employment Wellness in the Department of Human Resources led a UFS-only challenge that saw 60 teams of staff members log a total of 54 606 km in eight weeks. The division then challenged the NWU.

Together, the NWU and UFS walked 132 000 km. This year, the UFS is taking it one step further by challenging two more institutions.
  
Leading the way

“We aim to get South Africa active – starting with the UFS – by embracing fitness and health ourselves,” said Arina Engelbrecht, UFS Employee Wellness Specialist.

Participants on all fitness and activity levels will gun for a 200 000 km target over 10 weeks.

The challenge kicked off on the Bloemfontein Campus with a 3-km walk at the launch, leaving 199 997 km between the four universities for the rest of the eight-week challenge.

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept