Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2019 | Story Rulanzen Martin | Photo Rulanzen Martin
SAGV Conference
From left; Dr Cilliers van den Berg, Head of the German Section; Prof Marianne Zappen-Thomson, President of SAGV and Dr Akila Ahouli, representative from GAS.

As much as it was a conference on Germanistik (German Studies) it also highlighted the international footprint of the University of the Free State (UFS) and the important role of international and national academic collaborations. 

The German Section in the Department Afrikaans and Dutch; German and French at the UFS hosted the second conference of the Association of German Studies in Southern Africa (SAGV) and German Studies in Sub-Saharan Africa (GAS) from 15-18 April 2019 on the UFS Bloemfontein Campus. 

“We are very proud to be hosting the conference. It is an international conference with delegates from overseas who are all working in German Studies or to use the German term Germanistik,” said Dr Cilliers van den Berg, Head of the German Section at the UFS. 

Waiting room in Germanistik explored

Warteräume (waiting rooms) was the theme of the four-day conference with various research papers on the role and/or value of these waiting rooms within Germanistik. “It is the transitional areas, within Germanistik, on every conceivable level,” said Van den Berg. The conference was sponsored by the embassies of Germany, Austria and Switzerland, as well as the German Academic Exchange Service and the Goethe Institute of Johannesburg.

“When I look at the theme of the conference it is extremely exciting because it reminds me of Homi Bhabha’s Third Spaces, liminal spaces and the in-betweeners,” said Prof Heidi Hudson, Dean of the Faculty of The Humanities. 

UFS and internationalisation


“One of the concepts we actively embrace is that of internationalisation. Globally and nationally, internationalisation has become accepted as one of the critical processes advancing the core business of universities,” said Prof Francis Petersen, Rector and Vice-Chancellor of the UFS.

The delegates who attended the conference were from countries which included, among others, Ethiopia, Burkina Faso, Italy, Kenya, Germany and Namibia as well as delegates from the universities of Stellenbosch, Pretoria, Rhodes and North-West. 

“You represent a multifaceted culture that has enriched our global academic and cultural landscape over many years: great minds like Goethe, Kafka, Beethoven, Mozart, Freud, and Einstein,” said Prof Petersen.


News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept