Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 April 2019 | Story Xolisa Mnukwa | Photo Tshepang Mahlatsi
Next Chapter
UFS Next Chapter prioritises mental health of students.

The conversation themed Who helps the helpers? kicked off with Next Chapter founder and spokesperson, Tshepang Mahlatsi, explaining the diversity and defining factors of the world, which are divided into a number of outlining categories, namely religion, social class, ethnic race, gender, age, and many other crucial aspects.

Tshepang explained that mental health outstrips all man-made boundaries because of one thing that the human race has in common, namely each individual’s capabilities to deal with stress. 

This conversation zoomed in on mental health within the Faculty of Health Sciences and its career spectrum.  According to Tshepang, “It is only in emergencies and extreme situations that people recall the importance of mental health, due to the stigma that surrounds the topic”.

Representatives from the Faculty of Health Sciences and the Department of Student Development and Counselling assembled in Metro 7 of the James Moroka Building to discuss ways of addressing the question Who helps the helpers?

Next Chapter, in collaboration with the Faculty of Health Sciences, further launched a power hour where certified health professionals are given a platform to address and interact with Health Sciences students in a safe and free environment.

Tshepang explained that the initiative strives to start a culture and create a space where anyone dealing with a mental illnesses or issue does not feel ashamed to seek help.

 

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept