Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 April 2019 | Story Eugene Seegers | Photo Stephen Collett
Prof Chris Hermans
Prof Chris Hermans, extraordinary professor at the UFS, presents his inaugural lecture, titled Theology in an Age of Contingency.

“The road ahead is empty / It’s paved with miles of the unknown.”

Prof Chris Hermans quoted these lines from the song The Road Ahead, by Dutch vocal group City to City to introduce his inaugural lecture in the Faculty of Theology and Religion on 27 February 2019. Prof Hermans, a veteran researcher in pastoral theology, empirical, and practical religious studies at the Radboud University Nijmegen in the Netherlands and an extraordinary professor at the UFS, chose as his theme Theology in the Age of Contingency, stating that the uncertainty of life has affected all disciplines in the academy, from the sciences, philosophy, and pedagogy, to theology itself.

Although contingency is often defined as a “future event ... which is possible but cannot be predicted with certainty” (Oxford English Dictionary), Prof Hermans stated that, in the context of theology, it has more to do with complexity, unpredictability, coexistence of cultures, and an increasing number of decisions people need to make in modern-day life. 

Changing lanes

Prof Hermans recounted a memory from his childhood to illustrate some aspects of contingency: “Growing up, my parents told me to cycle on the right side of the road. They knew what the right side was. Everything had a right side: What norms and values to live by, what was right or wrong, when to pray and which words to use. ... We now live in a different world.”

Prof Hermans’ inaugural lecture reflected on four tasks of practical theology and missiology. He further asserted that the content and aim of these tasks change from the perspective of contingency.

Contingency perspectives

From a sociological perspective, said Prof Hermans, contingency is a characteristic of the age of modernisation in which we live. He stated that in the modern age, people have a much greater choice of individual ‘action options’ as well as a growing number of experiences as a result. Expounding on this, he said, “The fact that I am a Christian, and another person Hindu or Muslim, is largely due to the fact that I was born within a Christian family. The fact that I am Christian is a possibility and an actuality, but not a necessity.”

Prof Hermans also helped listeners to understand other areas in which contingency plays a role, such as the binary logic used when determining modalities of truth, or changing world views and philosophies of being, or even in our ethos, our art of living, and outlook on life.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept