Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 April 2019 | Story Ruan Bruwer | Photo Varsity Cup
Lubabalo Dobela
Flyhalf Lubabalo Dobela will be an important cog in the wheel for the Shimlas against the Maties in the semi-final stage of the Varsity Cup. He has been named Player that Rocks twice this year.

The Shimlas (University of the Free State) will go into the semi-final against the unbeaten Maties with confidence, knowing that they can compete against them, said coach Hendro Scholtz.

The Shimlas will travel to Stellenbosch for the Varsity Cup clash on Monday (8 April). They qualified for the play-offs thanks to a 38-14 victory over the University of Johannesburg (UJ) in the final round of the competition on Monday 1 April 2019.

The Free State students lost to the Maties by 59-14 two weeks ago, and although the score reflects a big hiding, the Shimlas stood tall for most of the encounter.

“With 18 minutes remaining, we trailed by only ten points (14-24). We can gain confidence from that. We learned a couple of things about them. We will have to stop their driving mall and be sharp when it comes to our discipline. They will hurt us if we concede penalties,” said Scholtz.

According to him, it is important to get off to a good start. “You often sit with students who have other things to think about apart from rugby, such as upcoming tests, which can hamper their concentration. Against UJ in the wet, it was important to play the conditions right, and I think it made the players concentrate that little bit more.”

The Shimlas won four of their eight group matches and will look back on their defeats against the Pukke and Ixias as matches that they could easily have won on another day.

It is the fifth time in the 12 years of the Varsity Cup that the Shimlas have reached the final-four stage, with one win in 2015 over the Ikeys.

The Shimlas will be without two of their key men among the forwards – the injured flank Janco Cloete and hooker Hanno Snyman.

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept