Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 April 2019 | Story Ruan Bruwer | Photo Varsity Cup
Lubabalo Dobela
Flyhalf Lubabalo Dobela will be an important cog in the wheel for the Shimlas against the Maties in the semi-final stage of the Varsity Cup. He has been named Player that Rocks twice this year.

The Shimlas (University of the Free State) will go into the semi-final against the unbeaten Maties with confidence, knowing that they can compete against them, said coach Hendro Scholtz.

The Shimlas will travel to Stellenbosch for the Varsity Cup clash on Monday (8 April). They qualified for the play-offs thanks to a 38-14 victory over the University of Johannesburg (UJ) in the final round of the competition on Monday 1 April 2019.

The Free State students lost to the Maties by 59-14 two weeks ago, and although the score reflects a big hiding, the Shimlas stood tall for most of the encounter.

“With 18 minutes remaining, we trailed by only ten points (14-24). We can gain confidence from that. We learned a couple of things about them. We will have to stop their driving mall and be sharp when it comes to our discipline. They will hurt us if we concede penalties,” said Scholtz.

According to him, it is important to get off to a good start. “You often sit with students who have other things to think about apart from rugby, such as upcoming tests, which can hamper their concentration. Against UJ in the wet, it was important to play the conditions right, and I think it made the players concentrate that little bit more.”

The Shimlas won four of their eight group matches and will look back on their defeats against the Pukke and Ixias as matches that they could easily have won on another day.

It is the fifth time in the 12 years of the Varsity Cup that the Shimlas have reached the final-four stage, with one win in 2015 over the Ikeys.

The Shimlas will be without two of their key men among the forwards – the injured flank Janco Cloete and hooker Hanno Snyman.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept