Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 April 2019 | Story Leonie Bolleurs
Science ambassadors
Friends Tekano Mbonani and Chaka Mofokeng are pursuing graduate degrees in respectively Physics at the University of the Free State (UFS) and Astronomy at the University of the Western Cape. The two got together and decided to reach out to the high school, Leseding Technical Secondary School, where they came from.

It was a full house as more than 120 learners packed the hall at the Leseding Technical Secondary School in the Free State, where two young Astronomy researchers had come home to tell their younger peers about their studies and career prospects across South Africa.

Chaka Mofokeng and Tekano Mbonani are both former learners at the high school. Currently pursuing graduate degrees – for Mbonani in Physics at the University of the Free State (UFS), and for Mofokeng in Astronomy at the University of the Western Cape – the two friends got together and decided to reach out to the high school where they came from.

The event took place in January before schoolwork, tests, and exam preparations are occupying learners’ minds, inviting them to think about the big picture – the future, and how to be part of it. This is timely, because in July last year, the MeerKAT radio telescope was inaugurated in the Karoo. The MeerKAT is the first step to the international SKA telescope project, but it is already one of the best radio telescopes in the world and has placed South Africa firmly on the world map of radio astronomy and engineering.

Building a bridge
“This project enables us to build a bridge between secondary and tertiary institutions. Currently focused on senior secondary students, we aim to promote science through outreach events and activities. Using science and technology-based activities and events, such as stargazing at an observatory or exploring the universe in a planetarium, we want to attract these future secondary graduates. We also provide mentorship, hoping to help them improve their academic performance in matric,” said Mbonani.

For a whole morning, they spoke about their journeys, about science, about the skills that scientists acquire during their studies and all the opportunities such studies open up in an era where the 4th Industrial Revolution is predicted to reduce the number of jobs in many traditional professions. They addressed their peers in both English and Sesotho.

Astronomy in South Africa contributes to critical-skills development. Investing in the MeerKAT, for example, meant that over a thousand bursaries were made available through the SKA South Africa Human Capacity Development programme. Young scientists like Mofokeng and Mbonani have the opportunity to be part of MeerKAT science projects through their studies, using machine learning and other skills that are high in demand in today’s world. This was one of the messages they brought home.

Gaining new skills

“As an Astronomy research student, I have gained skills such as data analysis, mathematical modelling, communication and writing, programming, and teamwork, among others. These are requirements for most companies and institutions. With the unfolding of the 4th Industrial Revolution, such skills sets make young and aspiring scientists the perfect candidates for making the most of future opportunities,” reflected Mofokeng.

Most of the learners said they have never attended a science-outreach event. They were inspired by the young scientists’ stories and nearly half of them said they could see themselves pursuing a career in science. The learners also expressed a strong interest in more events of this kind, as well as mentorship during Grades 11 and 12 from peers at university. They asked about the salaries earned by astronomers, how long the studies take, and where astronomers are working in South Africa.

This initiative, started by two bright young scientists, hopefully marks the beginning of many more events of this kind. Mofokeng and Mbonani are already planning what to do on their next trip home.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept