Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 April 2019 | Story Leonie Bolleurs
Science ambassadors
Friends Tekano Mbonani and Chaka Mofokeng are pursuing graduate degrees in respectively Physics at the University of the Free State (UFS) and Astronomy at the University of the Western Cape. The two got together and decided to reach out to the high school, Leseding Technical Secondary School, where they came from.

It was a full house as more than 120 learners packed the hall at the Leseding Technical Secondary School in the Free State, where two young Astronomy researchers had come home to tell their younger peers about their studies and career prospects across South Africa.

Chaka Mofokeng and Tekano Mbonani are both former learners at the high school. Currently pursuing graduate degrees – for Mbonani in Physics at the University of the Free State (UFS), and for Mofokeng in Astronomy at the University of the Western Cape – the two friends got together and decided to reach out to the high school where they came from.

The event took place in January before schoolwork, tests, and exam preparations are occupying learners’ minds, inviting them to think about the big picture – the future, and how to be part of it. This is timely, because in July last year, the MeerKAT radio telescope was inaugurated in the Karoo. The MeerKAT is the first step to the international SKA telescope project, but it is already one of the best radio telescopes in the world and has placed South Africa firmly on the world map of radio astronomy and engineering.

Building a bridge
“This project enables us to build a bridge between secondary and tertiary institutions. Currently focused on senior secondary students, we aim to promote science through outreach events and activities. Using science and technology-based activities and events, such as stargazing at an observatory or exploring the universe in a planetarium, we want to attract these future secondary graduates. We also provide mentorship, hoping to help them improve their academic performance in matric,” said Mbonani.

For a whole morning, they spoke about their journeys, about science, about the skills that scientists acquire during their studies and all the opportunities such studies open up in an era where the 4th Industrial Revolution is predicted to reduce the number of jobs in many traditional professions. They addressed their peers in both English and Sesotho.

Astronomy in South Africa contributes to critical-skills development. Investing in the MeerKAT, for example, meant that over a thousand bursaries were made available through the SKA South Africa Human Capacity Development programme. Young scientists like Mofokeng and Mbonani have the opportunity to be part of MeerKAT science projects through their studies, using machine learning and other skills that are high in demand in today’s world. This was one of the messages they brought home.

Gaining new skills

“As an Astronomy research student, I have gained skills such as data analysis, mathematical modelling, communication and writing, programming, and teamwork, among others. These are requirements for most companies and institutions. With the unfolding of the 4th Industrial Revolution, such skills sets make young and aspiring scientists the perfect candidates for making the most of future opportunities,” reflected Mofokeng.

Most of the learners said they have never attended a science-outreach event. They were inspired by the young scientists’ stories and nearly half of them said they could see themselves pursuing a career in science. The learners also expressed a strong interest in more events of this kind, as well as mentorship during Grades 11 and 12 from peers at university. They asked about the salaries earned by astronomers, how long the studies take, and where astronomers are working in South Africa.

This initiative, started by two bright young scientists, hopefully marks the beginning of many more events of this kind. Mofokeng and Mbonani are already planning what to do on their next trip home.

News Archive

NRF grants of millions for Kovsie professors
2013-05-20

 

Prof Martin Ntwaeaborwa (left) and Prof Bennie Viljoen
20 May 2013


Two professors received research grants from the National Research Foundation (NRF). The money will be used for the purchase of equipment to add more value to their research and take the university further in specific research fields.

Prof Martin Ntwaeaborwa from the Department of Physics has received a R10 million award, following a successful application to the National Nanotechnology Equipment Programme (NNEP) of the NRF for a high-resolution field emission scanning electron microscope (SEM) with integrated cathodoluminescence (CL) and energy dispersive X-ray spectrometers (EDS).

Prof Bennie Viljoen from the Department of Microbial, Biochemical and Food Biotechnology has also been awarded R1,171 million, following a successful application to the Research Infrastructure Support Programme (RISP) for the purchase of a LECO CHN628 Series Elemental Analyser with a Sulphur add-on module.

Prof Ntwaeaborwa says the SEM-CL-EDS’ state-of-the art equipment combines three different techniques in one and it is capable of analysing a variety of materials ranging from bulk to individual nanoparticles. This combination is the first of its kind in Africa. This equipment is specifically designed for nanotechnology and can analyse particles as small as 5nm in diameter, a scale which the old tungsten SEM at the Centre of Microscopy cannot achieve.

The equipment will be used to simultaneously analyse the shapes and sizes of submicron particles, chemical composition and cathodoluminescence properties of materials. The SEM-CL-EDS is a multi-user facility and it will be used for multi- and interdisciplinary research involving physics, chemistry, materials science, life sciences and geological sciences. It will be housed at the Centre of Microscopy.
“I have no doubt that this equipment is going to give our university a great leap forward in research in the fields of electron microscopy and cathodoluminescence,” Prof Ntwaeaborwa said.

Prof Viljoen says the analyser is used to determine nitrogen, carbon/nitrogen, and carbon/hydrogen/nitrogen in organic matrices. The instrument utilises a combustion technique and provides a result within 4,5 minutes for all the elements being determined. In addition to the above, the machine also offers a sulphur add-on module which provides sulphur analysis for any element combination. The CHN 628 S module is specifically designed to determine the sulphur content in a wide variety of organic materials such as coal and fuel oils, as well as some inorganic materials such as soil, cement and limestone.

The necessity of environmental protection has stimulated the development of various methods, allowing the determination of different pollutants in the natural environment, including methods for determining inorganic nitrogen ions, carbon and sulphur. Many of the methods used so far have proven insufficiently sensitive, selective or inaccurate. The availability of the LECO analyser in a research programme on environmental pollution/ food security will facilitate accurate and rapid quantification of these elements. Ions in water, waste water, air, food products and other complex matrix samples have become a major problem and studies are showing that these pollutants are likely to cause severe declines in native plant communities and eventually food security.

“With the addition of the analyser, we will be able to identify these polluted areas, including air, water and land pollution, in an attempt to enhance food security,” Viljoen said. “Excess levels of nitrogen and phosphorous wreaking havoc on human health and food security, will be investigated.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept